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Figure 1: Left: Our proposed VRVVC efficiently compresses volumetric video at variable bitrates using a single model. Middle:
We demonstrate two examples of reconstruction quality at a bitrate of 60 KB per frame. Right: The RD performance of our
approach surpasses prior work (e.g. ReRF (Wang et al. 2023), TeTriRF (Wu et al. 2024))

Abstract
Neural Radiance Field (NeRF)-based volumetric video has
revolutionized visual media by delivering photorealistic Free-
Viewpoint Video (FVV) experiences that provide audiences
with unprecedented immersion and interactivity. However,
the substantial data volumes pose significant challenges for
storage and transmission. Existing solutions typically opti-
mize NeRF representation and compression independently or
focus on a single fixed rate-distortion (RD) tradeoff. In this
paper, we propose VRVVC, a novel end-to-end joint opti-
mization variable-rate framework for volumetric video com-
pression that achieves variable bitrates using a single model
while maintaining superior RD performance. Specifically,
VRVVC introduces a compact tri-plane implicit residual rep-
resentation for inter-frame modeling of long-duration dy-
namic scenes, effectively reducing temporal redundancy. We
further propose a variable-rate residual representation com-
pression scheme that leverages a learnable quantization and a
tiny MLP-based entropy model. This approach enables vari-
able bitrates through the utilization of predefined Lagrange
multipliers to manage the quantization error of all latent rep-
resentations. Finally, we present an end-to-end progressive
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training strategy combined with a multi-rate-distortion loss
function to optimize the entire framework. Extensive exper-
iments demonstrate that VRVVC achieves a wide range of
variable bitrates within a single model and surpasses the RD
performance of existing methods across various datasets.

Introduction
Photorealistic volumetric video provides an immersive expe-
rience in virtual reality and telepresence, demonstrating sig-
nificant potential to become the next-generation video for-
mat. Traditional approaches to volumetric video reconstruc-
tion have primarily relied on point cloud-based methods
(Graziosi et al. 2020) and depth-based techniques (Boyce
et al. 2021), which often struggle with rendering quality
and realism. Recently, both Neural Radiance Fields (NeRF)
(Mildenhall et al. 2021) and 3D Gaussian Splatting (3DGS)
(Kerbl et al. 2023) have shown considerable promise in rep-
resenting photorealistic volumetric video. However, chal-
lenges remain in the storage and transmission of volumetric
video with NeRF or 3DGS. Compared to the implicit model-
ing of NeRF, 3DGS utilizes an explicit point cloud represen-
tation, which is less conducive to efficient compression. In
summary, NeRF’s compact representation and implicit mod-
eling capabilities make it inherently suitable for volumetric



video compression.
NeRF and its variants (Müller et al. 2022; Reiser et al.

2023) have achieved remarkable success in synthesizing
novel views, inspiring a multitude of derivative research
studies focused on dynamic scenes. Some techniques (Park
et al. 2021; Pumarola et al. 2020) employ deformation fields
to capture voxel movements relative to a canonical space,
while others (Fang et al. 2022; Işık et al. 2023; Fridovich-
Keil et al. 2023) introduce temporal voxel features or ap-
ply joint training across multiple frames to achieve supe-
rior temporal reconstructions. However, most existing stud-
ies primarily focus on improving the reconstruction quality
of NeRF representations, frequently neglecting the critical
need to minimize storage size and transmission bandwidth.
This oversight poses substantial challenges for practical ap-
plications, especially in streaming volumetric video.

To address these problems, several approaches have been
proposed to compress explicit features of dynamic NeRF.
For instance, ReRF (Wang et al. 2023) uses a grid-based
explicit representation to model the spatial-temporal fea-
ture space of dynamic scenes and adopts traditional image
encoding techniques to compress the representation after
training. TeTriRF (Wu et al. 2024) utilizes a hybrid repre-
sentation with tri-plane to model dynamic scenes and em-
ploys a traditional video codec to further reduce redundancy.
However, these methods optimize representation and com-
pression independently, neglecting the rate-distortion (RD)
tradeoff during the training phase, which ultimately lim-
its their compression performance. To close this gap, Join-
tRF (Zheng et al. 2024b) introduces an end-to-end com-
bined training approach for dynamic NeRF representation
and compression, but it is fixed-rate only and suffers from a
slow rendering speed.

In this paper, we propose VRVVC, a novel variable-rate
compression framework tailored for NeRF-based volumet-
ric video. Our key idea involves estimating the bitrate of
NeRF representations during end-to-end training and con-
trolling it using the RD tradeoff parameter λ. By incorporat-
ing both bitrate and distortion terms into the loss function,
we achieve optimal RD performance across a wide range of
variable bitrates using a single model, as illustrated in Fig.
1. We realize this through three main innovations. First, we
introduce a compact tri-plane implicit residual representa-
tion for inter-frame modeling within long sequences. For
each frame, VRVVC decomposes the radiance field into a
tri-plane and models the residual information between adja-
cent timestamps within this feature space. This representa-
tion effectively captures high-dimensional appearance fea-
tures within compact planes.

Second, we propose a variable-rate residual representa-
tion compression scheme that leverages a learnable quanti-
zation step and a tiny MLP-based entropy model, combined
with a predefined set of Lagrange multipliers, to facilitate
variable bitrates. Third, we present an end-to-end progres-
sive learning scheme to jointly optimize both the representa-
tion and compression. This approach yields temporally con-
sistent and low-entropy 4D sequential representations that
can be effectively compressed, significantly enhancing RD
performance. Experimental results show that our VRVVC

achieves variable bitrates by a single model while maintain-
ing state-of-the-art RD performance across various datasets.
Compared to the previous leading method, TeTriRF (Wu
et al. 2024), our approach achieves approximately -81%
BD-rate savings on the DNA-Rendering (Cheng et al. 2023)
dataset and an -46% BD-rate reduction on the ReRF dataset.

In summary, our contributions are as follows:
• We propose VRVVC, a novel approach for variable-

rate compression of NeRF-based volumetric video. Our
VRVVC achieves variable bitrates within a single model
while delivering improved RD performance.

• We introduce a compact and compression-friendly rep-
resentation that models volumetric video as a tri-plane
residual radiance field, effectively minimizing temporal
redundancy for inter-frame modeling of extended dy-
namic scenes.

• We present an end-to-end progressive training scheme
that jointly optimizes representation and compression
through a multi-rate-distortion loss function, signifi-
cantly improving compression performance compared to
post-training methods.

Related Work
Dynamic Radiance Field Representation. NeRF (Milden-
hall et al. 2021) employs implicit representations to synthe-
size highly realistic novel views. Its advancements (Müller
et al. 2022; Rabich, Stotko, and Klein 2024; Martin-Brualla
et al. 2021; Barron et al. 2021, 2022) in static scenes have
catalyzed research into dynamic scenes, particularly in vol-
umetric video. Deformation field techniques (Du et al. 2021;
Li et al. 2022b; Pumarola et al. 2020; Song et al. 2023)
recover temporal features by warping real-time frames to
a canonical space. However, these methods struggle with
large-scale motions and changes, resulting in slower train-
ing and rendering. Conversely, other approaches (Fang et al.
2022; Işık et al. 2023; Fridovich-Keil et al. 2023; Cao and
Johnson 2023a; Li et al. 2022a; Shao et al. 2023) extend
the radiance field into a 4D spatio-temporal domain, facili-
tating faster training and rendering at the cost of increased
storage demands. Several studies (Wang et al. 2023, 2024;
Wu et al. 2024; Zheng et al. 2024b,a) use residual radiance
fields to represent long-sequence dynamic scenes, leverag-
ing compact motion grids and residual feature grids to ex-
ploit inter-frame feature similarity. Our compact tri-plane
residual-based dynamic modeling method is designed for
inter-frame modeling in extended sequences, which effec-
tively captures high-dimensional appearance features within
compact planes.

NeRF Compression. Recently, deep learning-based im-
age and video compression methods have demonstrated
strong RD performance for 2D video (Lu et al. 2024a; Ballé,
Laparra, and Simoncelli 2016; Ballé et al. 2018; Ballé, La-
parra, and Simoncelli 2017; Guo et al. 2020; Choi, El-
Khamy, and Lee 2019; Cui et al. 2021; Lu et al. 2024b,
2022). Efforts are now being made to extend these compres-
sion techniques to the NeRF domain (Li et al. 2023; Lee
et al. 2023; Peng et al. 2023; Rho et al. 2023). VQRF (Li
et al. 2023) and ECRF (Lee et al. 2023) have made strides



by employing entropy encoding and frequency domain map-
ping, respectively, for compressing static radiance fields.
However, these methods are limited to static scenes and do
not address dynamic scenarios. Recent studies like ReRF,
VideoRF (Wang et al. 2024), and TeTriRF (Wu et al. 2024)
focus on dynamic scenes. They integrate traditional image
and video encoding techniques for feature compression but
fail to jointly optimize the representation and compression
of the radiance field, resulting in a loss of dynamic details
and compression efficiency. Our approach estimates the bi-
trate of representations during training and controls it using
the RD tradeoff parameter λ, enabling end-to-end training.
This allows our model to achieve a wide range of variable
bitrates, unlike JointRF, which is restricted to a fixed bitrate.

Method
In this section, we introduce the details of the proposed
VRVVC. Fig. 2 illustrates the overall framework of our
method. We model the inter-frame relationships of long dy-
namic scenes using a compact tri-plane residual representa-
tion. Additionally, we propose a variable-rate entropy cod-
ing scheme to achieve a wide range of variable bitrates
within a single model. We also introduce a fast progres-
sive training strategy that jointly optimizes representation
and compression, greatly improving compression efficiency
while preserving high rendering quality.
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Figure 2: Illustration of our VRVVC framework. We em-
ploy a compact tri-plane residual representation for inter-
frame modeling of long-duration dynamic scenes. The resid-
uals are encoded into several bitstreams in an MLP-based
entropy model that utilizes the RD tradeoff parameter λ to
achieve variable bitrates within a single model.

Tri-plane Residual Dynamic Modeling
Recall that a NeRF models a 3D volumetric scene using a 5D
function Ψ, which maps the spatial coordinate x = (x, y, z)
and view direction d = (θ, ϕ) to color c and density σ, for-
mulated as (c, σ) = Ψ(x,d). Then, volume rendering is em-
ployed for photo-realistic novel view synthesis. To enhance
training and rendering efficiency, we employ a feature tri-
plane P = {Pl | l ∈ L}, L = {xy, yz, xz} along with a
3D density grid V as our static representation F = (P,V).

Specifically, the radiance field of a static scene is:

f =
⋂
l∈L

φ
(
πl(x,P

l)
)

c = Φ(f , ω(d))

σ = φ (x,V)

(1)

where φ denotes the interpolation function, πl projects the
3D point x onto feature plane l, and

⋂
represents concate-

nating the features from three planes. The MLP Φ decodes
the color at point x based on the concatenated feature f and
the encoded view direction ω(d). The density of point x is
derived through interpolation on the density grid.

When expanding from static to dynamic scenes, a
straightforward approach is to utilize individual per-frame
features to represent a dynamic scene composed of M
frames, denoted as {Ft}Mt=1. However, this approach ne-
glects temporal coherence, resulting in substantial tempo-
ral redundancy. Conversely, other methods (Cao and John-
son 2023b; Fridovich-Keil et al. 2023) that directly model
entire dynamic scenes using NeRF representation may lead
to suboptimal performance for long sequences and are un-
suitable for streaming applications. To address these chal-
lenges, we extend the current static NeRF representation to
dynamic scenes by employing a frame-by-frame tri-plane
residual inter-frame modeling strategy.

Our tri-plane residual modeling method divides the entire
sequence into equal-length groups of features (GoFs), each
containing N frames. In each GoF, the first frame serves as
an I-feature F1 (keyframe) that is modeled independently,
while the subsequent frames are designated as P-features
{Rt}Nt=2, which represent the compensated residual relative
to the preceding feature. Besides, frames within the same
group share a compact global MLP Φ as the feature decoder
for the spatial-temporal feature space, effectively reducing
bitrate consumption while maintaining performance quality.
Finally, our VRVVC sequentially represents a GoF with N
frames as Φ and G = {F1,R2,R3 · · ·Rt · · ·RN}, as illus-
trated in Fig. 2.

Our VRVVC enables highly efficient sequential modeling
of P-features by leveraging inter-frame feature similarities.
Specifically, we retrieve the reconstructed feature of the pre-
vious frame F̂t−1 from the decoded buffer and combine it
with the input images of the current frame to learn the resid-
ual for the current frame Rt, as shown in Fig. 3. Then, we
can reconstruct the entire feature of the current frame F̂t by
applying the residual compensation:

F̂t = F̂t−1 + R̂t

= (
⋃
l∈L

(P̂l
t−1 + R̂l

t), V̂t−1 + R̂σ
t )

(2)

where
⋃

represents the union of tri-plane features, and R̂t =

{R̂xy
t , R̂yz

t , R̂xz
t , R̂σ

t } denotes the reconstruction residual
for tri-plane and density grid. Finally, F̂t is stored in the
decode buffer for the reconstruction of the next frame.

It is worth noting that our tri-plane residual representation
has several significant advantages. Firstly, it is both effective
and compact, capable of capturing high-dimensional appear-
ance features and decomposing them into three orthogonal
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Figure 3: Overview of our progressive training. In the first stage, we adopt the reconstructed features F̂t−1 from the previous
frame, retrieved from the decoded buffer, to train the current frame’s low-resolution residual features. In the second stage, these
features are reused as an effective initialization for further training, where they are integrated with a variable-rate entropy coding
model for joint optimization. The entire training process is supervised by the multi-rate-distortion loss Ls.

feature planes. Secondly, it is highly compression-friendly,
as it leverages the simplicity of the residual data distribution
to efficiently reduce spatio-temporal redundancy between
frames. Thirdly, it facilitates efficient training and render-
ing by incorporating an explicit density grid, which enables
rapid retrieval of density values. This allows for the swift re-
moval of sample points in empty space without the need for
network inference, thus accelerating both training and infer-
ence processes.

Variable-rate Entropy Coding
We also propose a variable-rate entropy coding scheme for
residual representation, enabling flexible adjustments be-
tween different bitrates and reconstruction quality within a
single model. Unlike traditional methods (Yang et al. 2020;
Lin et al. 2021) that adjust the interval of the fixed La-
grange multiplier in universal quantization, our method in-
tegrates λ with a univariate quantization regulator a to con-
trol the quantization error of the overall latent representa-
tion, achieving a wide range of variable bitrates.

A shared two-layer MLP is first used to extract
high-dimensional latent representation yt from the resid-
ual Rt, aggregating feature information while mitigating
compression-induced information loss. This is followed by
a CNN with five 3x3 layers, which refines the features and
generates the final context feature zt. We then estimate the
Gaussian entropy p(ŷt|ẑt) of the quantized latent represen-
tation ŷt on condition of quantized context feature ẑt . This
estimation guides the arithmetic entropy coding of ŷt into
a bitstream. In this paper, we use a tiny MLP to predict
p(ŷt|ẑt) as follows:

p(ŷt|ẑt) = N (µ, σ′) ∗ U(−1

2
,
1

2
)(ŷt) (3)

where N (µ, σ′) denotes the Gaussian distribution.
When yt undergoes different quantization operations,

its probability distribution can vary significantly, leading
to substantial quantization errors. To mitigate this, we in-
troduce a set of learnable quantization parameters A =

{a1, a2, . . . , an}, coupled with predefined Lagrange multi-
pliers Λ = {λ1, λ2 · · ·λn} to control these errors and en-
able variable bitrates. The learnable quantization parameter
ai adjusts the quantization bin size and impacts bitrate, while
the Lagrange multiplier λi controls the trade-off between bi-
trate and distortion, creating a coupling relationship between
ai and λi. In learning-based image codecs,

√
λi is nearly

proportional to ai, whereas in video codecs, QP is propor-
tional to ln(λ). Thus, pairing ai with λi better balances the
RD trade-off, and the values are averaged across different
scenes to ensure broad applicability. The latent representa-
tion yt is initially scaled by its corresponding parameter ai
before being quantized into ŷt as follows:

ŷt = round
(
yt

ai

)
· ai, ai ∈ A. (4)

The entropy model of ŷt in Eq. 3 is then rewritten as:

p(ŷt|ẑt, ai) = N (µi, σ
′
i) ∗ U

(
− 1

2ai
,
1

2ai

)
(ŷt) (5)

Since the quantization operation is inherently non-
differentiable, we also apply a straight-through estimator
(STE) to approximate the gradient during backpropagation.
The STE facilitates gradient flow through the quantization
step by approximating the gradient as ∂ŷt

∂yt
≈ 1. This approx-

imation enables effective optimization of the learnable quan-
tization parameters ai during training, allowing the model to
dynamically adjust the quantization step size and optimize
the bitrate. The RD loss function for the variable-rate model
is formulated as:

LRD =

n∑
i=1

(E[− log p(ŷt|ẑt, ai)] + λi ·D(Rt, R̂t)) (6)

where E[− log p(ŷt|ẑt, ai)] represents the estimated bitrate
required to encode ŷt, while D(Rt, R̂t) measures the dis-
tortion between the original residual Rt and its reconstruc-
tion R̂t. The Lagrange multiplier λi paired with ai balances
the trade-off between bitrate and distortion. Our approach



integrates a univariate quantization regulator into the quan-
tization and entropy coding process to control quantization
error. By applying rate-distortion supervision across various
quantization parameters, we achieve variable bitrates within
a single model.

Progressive Training Strategy
Here, we introduce an end-to-end progressive training
scheme that jointly optimizes both the representation and
compression to further improve RD performance. An
overview of our progressive training, which incorporates a
two-stage coarse-to-fine strategy, is illustrated in Fig. 3. In
the first stage, we train the density grid and feature planes at
a low resolution, enabling rapid exploration of the scene’s
core structure. In the second stage, we leverage the low-
resolution feature planes from the first stage as an effective
initialization for subsequent training, combining them with
a variable-rate entropy coding model for joint optimization.
Our approach dramatically accelerates training while im-
proving both rendering quality and compression efficiency.

Stage 1. The inputs for this stage include the multi-view
images of the current frame and the reconstructed features
F̂t−1 of the previous frame obtained from the decoded
buffer. These reconstructed features are downsampled to a
low resolution, serving as the initialization for the coarse
training stage. The outputs of this stage are the residual tri-
plane features and the density grid, both at a low resolu-
tion. The density grid provides a rough approximation of
the scene’s geometry, which is essential for identifying and
eliminating idle spaces during the preliminary reconstruc-
tion of the density field, thereby reducing unnecessary com-
putational overhead. This training stage not only accelerates
convergence but also establishes a solid foundation for more
detailed optimization in stage 2.

Stage 2. The residual features generated in stage 1 are
upsampled to a higher resolution and used as initialization
for the second training stage. By reusing these features in-
stead of starting from scratch, we greatly reduce the training
time and enhance convergence speed. Additionally, we em-
ploy a learnable variable-rate entropy coding model that is
jointly trained with the residual dynamic modeling. During
training, multiple λ are used within the entropy model to op-
timize the quantization parameters A, enabling variable-rate
bitstreams. This joint training approach effectively captures
high-dimensional appearance features with low entropy, sig-
nificantly enhancing compression efficiency while maintain-
ing high rendering quality.

Training Object. The multi-rate-distortion loss function
of the entire framework is formulated as follows:

Ls = Lcolor + γ1Lres + (s− 1)γ2LRD, s ∈ {1, 2} (7)

where Ls is the loss for stage s, γ1 and γ2 are the weights for
our regular terms. Lres = ∥Rt∥1 serves as a residual regu-
larization term, designed to ensure temporal continuity and
minimize the magnitude of Rt. LRD represents variable-
rate compression loss. Lcolor is the photometric loss,

Lcolor =
∑
r∈ℜ

∥cg(r)− ĉ(r)∥2 (8)

where ℜ is the set of training pixel rays, cg(r) and ĉ(r) are
the ground truth and reconstructed colors of a ray r, respec-
tively.

Rendering Acceleration. In addition to utilizing a pro-
gressive training strategy, we also employ a deferred render-
ing model to further accelerate both the training and render-
ing processes. Specifically, We begin by accumulating the
features along the ray:

f̃(r) =

ns∑
k=1

Tk (1− exp(−σkδk)) fk,

Tk = exp

−
k−1∑
j=1

σjδj

 ,

(9)

where ns represents the number of sample points along the
ray r, δk denotes the interval between adjacent samples.
The density σk = φ(k,V) is interpolated from the den-
sity grid V. We also leverage the density grid to eliminate
points in empty space, thus reducing unnecessary compu-
tations. The composed feature fk is formed by concatenat-
ing the appearance features f lk, l ∈ L from the tri-planes.
The reconstructed color of the ray r is then computed us-
ing a tiny global MLP Φ that is shared across frames in the
same GoF: ĉ(r) = Φ(f̃(r), ω(d)) where ω(d) denotes the
positional encoding of the viewing direction. This approach
significantly reduces computational complexity, as each ray
requires only a single MLP decoding.

Experiment
Configurations
Datasets. We validate the effectiveness of our method using
two datasets: ReRF (Wang et al. 2023) and DNA-Rendering
(Cheng et al. 2023). The ReRF dataset consists of 74 cam-
era views at a resolution of 1920 × 2080. We use 72 views
for training and the remaining 2 for testing. Similarly, the
DNA-Rendering dataset includes 48 views at a resolution of
2048 × 2448, with 46 views designated for training and the
remaining 2 for testing. To ensure fairness across all com-
parative experiments, we specify the same bounding box for
identical sequences.

Setups. Our experimental setup includes an Intel E5-2699
v4 and a V100 GPU. We train 40,000 iterations, with each
GoF lasting 30 frames. The Lagrange multipliers Λ are ini-
tialized as {0.0018, 0.0035, 0.0067, 0.0130, 0.025, 0.0483,
0.0932, 0.18}, and the quantization parameters A are set to
{1.0000, 1.3944, 1.9293, 2.6874, 3.7268, 5.1801, 7.1957,
10.0}. The weights γ1 and γ2 are 0.0001 and 0.001, respec-
tively.

Evaluation Metrics. To evaluate the compression per-
formance of our method, we use Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity Index (SSIM) (Wang
et al. 2004) as quality metrics. Bitrate is measured in KB
per frame. For overall compression efficiency, we calculate
the Bjontegaard Delta Bit-Rate (BDBR). Additionally, we
assess rendering time efficiency (R.T.) by calculating the av-
erage rendering time per frame in seconds.
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Figure 4: Qualitative comparison against volumetric video coding methods K-planes (Fridovich-Keil et al. 2023), ReRF (Wang
et al. 2023), TeTrirf (Wu et al. 2024) and JointRF (Zheng et al. 2024b).

ReRF Dataset DNA-Rendering Dataset
Training View Testing View SIZE ↓ R.T. ↓ Training View Testing View SIZE ↓ R.T. ↓

Methods PSNR↑ SSIM↑ PSNR↑ SSIM↑ (KB) (s) PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ (KB) (s)
K-Planes 35.18 0.982 29.96 0.951 2992 2.20 31.98 0.971 27.81 0.946 3085 2.20

ReRF 35.20 0.982 30.88 0.962 496 0.44 30.20 0.968 29.59 0.950 314 0.47
TeTriRF 35.94 0.986 32.05 0.974 101 0.13 32.33 0.976 29.48 0.950 160 0.12
JointRF 35.62 0.983 31.94 0.970 227 0.78 33.74 0.979 30.27 0.962 269 0.82

Ours (Low) 35.93 0.986 32.16 0.975 40 0.12 33.24 0.978 30.25 0.962 30 0.13
Ours (Mid) 36.31 0.988 32.45 0.976 62 0.12 34.45 0.981 31.37 0.968 56 0.14
Ours (High) 38.73 0.990 33.52 0.978 223 0.13 35.95 0.984 32.45 0.977 240 0.14

Table 1: Quantitative comparison against volumetric video encoding methods. Bold data indicate the best performance, while
underlined data indicate the second best.

Comparison
We provide the experimental results to demonstrate the ef-
fectiveness of VRVCC. We compare with other state-of-the-
art methods including K-planes (Fridovich-Keil et al. 2023),
ReRF (Wang et al. 2023), TeTrirf (Wu et al. 2024) and
JointRF (Zheng et al. 2024b) both qualitatively and quan-
titatively. Fig. 4 displays qualitative comparisons for the
kpop sequence from ReRF and the Archer sequence from
DNA-Rendering. The results indicate that our VRVVC re-
constructs finer details at a lower bitrate, such as the clothing
in kpop and the hand in Archer, demonstrating the superior
subjective experience provided by our method.

Tab. 1 shows the detailed quantitative results on the ReRF
and DNA-Rendering datasets. In this table, “Ours (Low)”,
“Ours (Middle)” and “Ours (High)” denote the performance
of our method, which provides variable-rate bitstreams us-
ing a single model. “Ours (Middle)” achieves higher recon-
struction quality at a lower bitrate compared to other meth-
ods. “Ours (High)” offers significantly better reconstruction
quality while requiring much less bitrate than K-planes and
ReRF. “Ours (Low)” achieves a bitrate substantially lower
than TetriRF and JointRF with comparable reconstruction
quality. Additionally, both our method and TetriRF offer

rendering times that are at least twice as fast as the ReRF
and JointRF. Tab. 2 presents a detailed analysis of the com-
putational complexity of our VRVVC model on the ReRF
dataset, showing that VRVVC offers excellent computa-
tional efficiency and serves as an effective solution for volu-
metric video compression.

Train(min) Render(s) Encode(s) Decode(s)
2.6 0.13 1.23 0.88

Table 2: Complexity analysis results of VRVVC.

The RD performance of our VRVVC compared with
ReRF, TeTriRF, and JointRF is presented in Tab. 3. No-
tably, our VRVVC consistently outperforms these methods
in terms of RD performance. For instance, compared to
TeTriRF, our method achieves average BDBR reductions of
-46.25% for training views and -48.27% for testing views
on the ReRF dataset. Similarly, on the DNA-Rendering
dataset, we observe average BDBR savings of -81.86%
for training views and -83.51% for testing views. The RD
curves, shown in Fig. 5, further illustrate that our VRVVC
achieves superior RD performance across a wide range of
bitrates. It is worth noting that while JointRF requires train-



Dataset Method Training View Testing View
BDBR(%) ↓ BDBR(%) ↓

ReRF
ReRF 424.97 346.58

JointRF 127.70 90.33
Ours -46.25 -48.27

DNA-
Rendering

ReRF 177.71 103.56
JointRF 2.99 0.32

Ours -81.86 -83.51

Table 3: The BDBR results of our VRVVC, ReRF and Join-
tRF when compared with TeTriRF on different datasets.

(a) ReRF (Train) (b) ReRF (Test)

(c) DNA-Rendering (Train) (d) DNA-Rendering (Test)

Figure 5: The RD performance comparison results on the
ReRF and DNA-Rendering datasets.

ing multiple fixed-bitrate models to achieve different rate-
distortion trade-offs, our method provides a broader range
of RD performance with just a single model, offering greater
flexibility and efficiency.

Ablation Studies
We perform three ablation studies to evaluate the effective-
ness of residual dynamic modeling, progressive training, and
joint optimization by disabling each component individually
during training. In the first study, we model volumetric video
frame by frame without applying residual dynamic model-
ing. In the second, we skip the initial stage and train the en-
tire framework directly. In the final study, we train the resid-
ual representation and entropy model separately instead of
optimizing them jointly.

The results of the ablation studies can be seen in Fig.
6. It shows that disabling either residual dynamic model-
ing or progressive training leads to an increase in bitrate,
underscoring the effectiveness of these modules. Addition-
ally, joint optimization produces temporally consistent and
low-entropy 4D sequential representations, which are more
efficiently compressed, thereby significantly enhancing RD
performance. Fig. 7 presents a qualitative comparison of the
complete VRVVC at different bitrates against its variants.
These findings highlight the advantages of our residual dy-
namic modeling, progressive training, and joint optimization
strategy in volumetric video compression.

(a) Training View (b) Testing View

Figure 6: RD curves. This figure illustrates the efficiency of
various components within our method.

Ours
42K

ablation

w/o Dynamic Modeling
1.27M

w/o Progressive Training 
273K

w/o Joint Optimization
978K

Ours
80K

Ours
242K

Figure 7: Qualitative results of complete VRVVC and its
variants. Excluding any module results in lower reconstruc-
tion quality and an increase in bitrate.

Conclusion
In this paper, we present a novel variable-rate compression
framework tailored for NeRF-based volumetric video. Our
tri-plane residual representation in VRVVC is compact and
compression-friendly, effectively reducing spatio-temporal
redundancy between frames in a sequential manner. Our
residual representation compression scheme employs an im-
plicit entropy model coupled with RD tradeoff parameters
to enable variable bitrates. Our end-to-end training strat-
egy jointly optimizes both representation and compression,
significantly improving compression performance. Experi-
mental results demonstrate that VRVVC not only achieves
a wide range of variable bitrates within a single model but
also surpasses state-of-the-art fixed-rate methods, greatly
advancing the transmission capabilities of volumetric video.
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