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Figure 1: Illustration of our Neural3D system, which achieves convenient and realistic neural reconstruction and free-
viewpoint rendering of human portraits from only a single portable RGB camera.

ABSTRACT
Reconstructing a human portrait in a realistic and convenient man-
ner is critical for human modeling and understanding. Aiming at
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light-weight and realistic human portrait reconstruction, in this pa-
per we propose Neural3D: a novel neural human portrait scanning
system using only a single RGB camera. In our system, to enable ac-
curate pose estimation, we propose a context-aware correspondence
learning approach which jointly models the appearance, spatial
and motion information between feature pairs. To enable realistic
reconstruction and suppress the geometry error, we further adopt
a point-based neural rendering scheme to generate realistic and
immersive portrait visualization in arbitrary virtual view-points.
By introducing these learning-based technical components into
the pure RGB-based human modeling framework, we can achieve
both accurate camera pose estimation and realistic free-viewpoint
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rendering of the reconstructed human portrait. Extensive experi-
ments on a variety of challenging capture scenarios demonstrate
the robustness and effectiveness of our approach.
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1 INTRODUCTION
Robust perception and understanding with humans present can
enable numerous applications, such as human analysis and recogni-
tion, computer games, and virtual/augmented reality (VR/AR). How
to reconstruct a realistic 3D model of a human target especially
under an extremely light-weight capture setup, i.e. using only a
single RGB camera, evolves as a cutting-edge yet bottleneck tech-
nique, which has recently attracted substantive attention of both
the multimedia and computer graphics communities.

Despite tremendous advances in vivid and robust human por-
trait scanning using the RGBD sensors [12, 15, 29, 43, 49, 53], the
utilization of depth sensor in these approaches brings inherent
constraint for working under general illumination especially for
outdoor capturing scenarios. On the other hand, pure RGB-based
human modeling approaches [2, 3, 32, 36] usually adopt per-vertex
coloring or atlas texturing schemes to provide vivid rendering re-
sults in a novel view, which suffers from geometry reconstruction
error, leading to visually unpleasant results. With the significant
progress of deep learning techniques, recent neural rendering ap-
proaches [1, 39–41] can further generate more realistic 2D results
in the novel views. However, reliable correspondence estimation
and subsequently camera pose estimation for all the input images
remains the key fundamental problem of RGB-based human model-
ing. Early solution relies on handcrafted features such as SIFT [31]
and RANSAC [18] to mitigate the influence of outlier, which is
based on local content analysis and fragile to excessive outliers.
Recent approaches [17, 27, 33, 34, 51, 54] utilize deep neural net-
works to generate more reliable feature detectors and descriptors
or exploit local context and motion normalization for outlier rejec-
tion. However, these techniques emphasize unanimously on the
context-encoding aspect while ignoring the underlying geometry
or topology such as relative positions between individual feature
points, leading to high sensitivity to outliers.

In this paper, we attack the above challenges and propose Neu-
ral3D, a novel light-weight neural human portrait reconstruction
system, which can generate realistic rendering results of the target
in the novel viewpoints, only using about 80 RGB images roughly
around the target from a single RGB camera. Our novel pipeline

brings aspects inherent in RGB-based human modeling to both the
neural rendering and data-driven corresponding optimization.

More specifically, to enable reliable inlier correspondence esti-
mation, we first propose a context-aware end-to-end hybrid scheme
to measures the matching score of each candidate feature (SIFT in
our implementation) pair from various images, consisting of an ap-
pearance module and a motion module. The former module jointly
extracts the appearance and the spatial information in the image
domain of the candidate pair, while the motion module encodes
the correspondence’s coordinates into the motion feature space
with the self-attention mechanism to extract both the local and
global motion information. Second, based on all these inlier feature
pairs via the hybrid matching scheme above, we further perform
a global bundle adjustment to generate the accurate camera poses
and initial geometry of the human target, followed by a shape-from-
silhouette refinement so as to generate a dense initial geometry.
Finally, to enable realistic rendering of the human portrait in arbi-
trary viewpoints and suppress the influence of geometry error, a
neural portrait scheme is adopted, consisting of a projection and
rasterization module for feature projection as well as a U-Net based
feature decoder. Our neural scheme enables realistic free-viewpoint
rendering of the human portrait.

In summary, the main contributions of Neural3D include:

• We propose a novel neural portrait scanning system for
realistic free-viewpoint rendering from only a single portable
RGB camera.

• To enable accurate pose estimation, we propose a context-
aware correspondence learning approach to jointly model
the appearance, spatial and motion information.

• We combine the initial geometry with an effective point-
based neural rendering scheme to provide realistic and im-
mersive portrait visualization.

2 RELATEDWORK
Human Modeling. Acquiring 3D geometric content and realis-
tic rendering for human modeling from real world is an essential
task for many applications in multimedia and computer graphics
communities. High-quality human models can be created using 3D
scanning devices, such as laser scan [4, 5] or a multi-view studio-
level setup [14, 21, 22, 44] with a controlled imaging environment.
Those systems are usually costly and the synchronizing and cali-
brating multi-camera systems is cumbersome, leading to the high
restriction of the wide applications for daily usage.

The availability of commodity depth cameras enabled low-cost
human modeling without complicated multi-view setup [12, 29,
30, 45, 47]. These methods utilize the TSDF volume [16] for both
geometry representing and camera localization. To capture and
reconstruct the full body, researchers adopt a sparse multi-view
setup [48, 49] with only three or four depth sensors for human
modeling. However, the active IR-based depth sensors are unsuit-
able for outdoor capture, and their high power consumption limits
the mobile application. Recently, with the advent of deep neural
networks, purely RGB-based monocular methods have been pro-
posed to encode various prior information of human models such
as motion [23, 24, 50], geometry [20, 28, 36, 37], garment [8] or
appearance [25]. However, such methods still relies on per-vertex
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coloring or atlas texturing schemes which suffers from geometry
error and visually unpleasant results. Recent neural rendering al-
gorithms [1, 39–41] bring huge potential to enable more realistic
2D rendering results in the novel views. However, researchers pay
less attention to strengthen the human scanning process with neu-
ral rendering technique, especially for light-weight capture in the
real-world scenario. Comparably, our approach not only combines
pure RGB-based human portrait scanning with neural rendering
but also benefits from a robust camera pose optimization scheme
via corresponding learning, which is the key fundamental problem
of RGB-based human modeling.
Correspondence Learning. Reliable correspondence estimation
and subsequently camera pose estimation serves as the key funda-
mental problem of a variety of RGB-based applications such as in
the wild scene reconstruction and 3D scanning. Early solution relies
on handcrafted features such as SIFT [31], SURF [7] and ORB [11],
etc. which can tackle the lighting, perspective and scale variations
for correspondence matching. Then, the RANSAC [18] algorithm
is adopted to reject the substantial outliers of those hand-crafted
feature matching, which has been the gold standard for outlier
rejection for decades.

With the advent of deep neural networks, recent learning-based
approaches have achieved significant progress for both feature es-
timation and outlier rejection. LIFT [51] proposes an end-to-end
feature estimation network consisting of image-based detector, an
orientation estimator and a rotation-corrected descriptor, while Su-
perPoint [17] employs a learning architecture in a self-supervision
manner to simultaneously detect the keypoints and compute the de-
scriptors. Besides, global methods such as ContextDesc[26] utilizes
a context-aware network to aggregate both the spatial and visual
context of the whole image representations. In contrast to these
methods that are devoted to effective extracting feature descriptors,
in this paper we focus on the post-phase, i.e. distinguishing the
false matching from the true inlier correspondences.

As for outlier rejection, Universal RANSAC (USAC) [35] adopts
the generalized hypothesize-and-verify framework and incorpo-
rates the practical RANSAC variants to improve both the speed
and accuracy performance. DSAC [9] adopts a probabilistic se-
lecting process to make it differential so that the complete pro-
cess can be trained in an end-to-end manner, while Marginalizing
Sample Consensus (MAGSAC) [6] proposes to find the optimal
model through weighted least-squares fitting without estimation of
an inlier-outlier threshold. Recently, Neural-Guided RANSAC(NG-
RANSAC) [10] employs deep networks to first estimate the confi-
dence of the putative correspondences being inliers to guide the
matching process with improved model hypothesis searching. As
the most closely related to our approach, PointCN [27] employs the
PointNet-like [33, 34] architecture to classify every pair of corre-
spondences as either inlier or outlier and then uses the weighted
eight-point algorithm for essential matrix estimation. Specifically,
PointCN [27] utilizes context normalization to learn global con-
text features that encode additional camera motion in terms of
correspondences distributions. In a similar vein, Zhang et al. [54]
utilize novel differential pooling and unpooling operations on cor-
respondences by learning a soft assignment matrix that implicitly
clusters correspondences with respect to local context. However,

these approaches above only focus on the context of the correspon-
dence instead of the spatial information across the images, and the
context normalization operation cannot directly model the rela-
tions among the correspondences and update the correspondences
feature according to the similarity.

In contrast, our correspondence learning approach utilize a KNN
graph to capture the spatial information among all the key points
and a self-attention mechanism to obtain the motion similarity
among the correspondences. Our approach explicitly exploits the
appearance, spatial and motion relationship jointly between puta-
tive correspondences for more reliable outlier rejection.

3 SYSTEM OVERVIEW
Recall that Neural3D attempts to reconstruct a realistic human por-
trait using only a single RGB camera. Fig. 1 illustrates the high-level
components of our system, which takes a sequential RGB images as
input and generates a neural portrait as output, achieving realistic
free-viewpoint rendering results at any capture views. To maintain
the light-weight setting and the potential of wide applications for
daily usage, our Neural3D only relies on a consumer-level mobile
phone to capture about 70 RGB images roughly around the target
person. Then, we combine a novel data-driven pose estimation
scheme with a neural portrait learning scheme to provide realistic
reconstruction. A brief introduction of each main component of
our pipeline is provided as follows.
Correspondence Estimation. To enable accurate camera pose es-
timation which is the fundamental problem of image-based human
modeling, we propose a data-driven correspondence evaluation
scheme for each image pairs, which jointly considers the spatial
and appearance-based feature similarity as well as a motion correc-
tions based on epipolar constraint. Our estimation scheme achieves
reliable inlier correspondence selection across all the image pairs
for further neural portrait reconstruction.
GeometryGeneration.Based on the data-driven correspondences
above, a global bundle adjustment scheme is adopted to obtain both
the accurate camera poses of all the input RGB frames and an ini-
tial sparse 3D geometry of the human target. Furthermore, with
the optimized camera poses, we utilize the traditional shape-from-
silhouette technique to generate a dense initial geometry of the
target, where the human silhouette is obtained by applying the
human parsing method to each input RGB image.
Neural Portrait Reconstruction. A straight-forward texturing
scheme applied to the initial geometry using the input RGB frames
leads to inferior visual results due to the reconstruction error. To this
end, we utilize a neural portrait reconstruction scheme to generate
high quality rendering results in the new virtual views, so as to
enable realistic free-view-point rendering of human portrait. The
key component in our neural portrait scheme is a differentiable
renderer consisting of a projection and rasterization module for
feature projection as well as a U-Net based feature decoder.

4 METHOD
4.1 Correspondence Learning
Reliable correspondence evaluation is critical for accurate camera
pose estimation and further RGB-based human modeling. To this
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Figure 2: The network architecture of our context-aware correspondence learning scheme,mainly consisting of an appearance
module and a motion module, so as to jointly model the appearance, spatial and motion information.

end, we propose a context-aware correspondence learning scheme
to distinguish the false matching from the true inlier correspon-
dences, which jointly models the appearance, spatial and motion
information between each image pair. As illustrated in Fig. 2, our
scheme takes the feature descriptors {𝑓 1

𝑖
}, {𝑓 2

𝑖
} and their pixel

locations {𝑝1
𝑖
}, {𝑝2

𝑖
} of the candidate correspondences from each

image pair I1 and I2 as input, and generates the corresponding
matching scores {𝑐𝑖 } for robust outlier rejection. Here, 𝑖 ∈ [1, 𝑁 ]
denotes the index of all the 𝑁 feature pairs. Specifically, our novel
network architecture consists of an appearance module and a mo-
tion module. The former module not only encodes the appearance
information from the feature descriptions but also utilizes a KNN
graph architecture to extract the spatial information across vari-
ous connected features in the image domain. The motion module
encodes the correspondence’s coordinates into the motion feature
space with a self-attention mechanism and a node-based clustering
to extract global and local motion information, respectively. Then,
both the matching results from both modules are concatenated to
generate the final per-pair matching score for outlier rejection and
subsequent global bundle adjustment as well as the initial geometry
generation.
Appearance Module. Since the feature descriptions only encodes
local textural context from the local image regions, only using fea-
ture descriptions cannot handle repeated texture patterns for outlier
rejection. To involve more spatial structure information, we adopt a
novel KNN graph block in our appearance module, which encodes
hybrid embeddings in terms of both and feature descriptions and
positions. In each KNN layer of our KNN graph block, we utilize
an aggregator and an updater, which are formulated as follows:

𝑓
agg
𝑖

=
1
𝐾

𝐾∑
𝑘=1

𝑓𝑖,𝑘 , 𝑓
upd
𝑖

= 𝑓
agg
𝑖

·𝑊 . (1)

Here, 𝑓𝑖,𝑘 denotes the 𝑘-th nearest detected feature of 𝑓𝑖 in the same
image and𝑊 denotes the parameters of the multi-layer perceptron

(MLP) in our updater. Note that for simplification we omit the sub-
script for image indexing. Furthermore, we employ a MLP-based
matching network that concatenates the hybrid keypoint embed-
dings after the KNN block to estimate their similarities. After such
matching, we obtain a hybrid feature map which encodes both the
appearance and spatial structural similarities of the correspondence
candidates, denoted as Sapp ∈ R𝑁×𝐶 , where 𝐶 is the dimension of
the hybrid feature space.
Motion Module. Our motion module essentially encodes the cor-
respondence’s coordinates into the motion feature space with a self-
attention mechanism and a node-based clustering to extract global
and local motion information, respectively. To this end, we apply the
PointCN block [27, 54] to encode the motion features of the corre-
spondence’s coordinates, which consists of shared-parameter MLP,
batch normalization and ReLU layers. Comparably, we introduce
both global and local context blocks for the context normalization,
since the original normalization in [27, 54] only models the local
context, leading to inferior results when the false matches have
comparable influence in terms of the mean and variances as the
true matches. To fetch the global motion information, we utilize the
self-attention mechanism in our global context block to calculate
a global affinity between the correspondences. Given the feature
map F ∈ R𝑁×𝐶 after the PointCN block, we apply an attention map
to it to update the global information and obtain the normalized
feature map F∗:

F∗ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(F) · F = A · F. (2)

Here, A is the self-attention map, which is produced by applying
the softmax function among the correspondences as follows:

A = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(F) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (FFT/𝐶), (3)

where 𝐶 is the dimension of the hybrid feature space for scale
normalization.

As for modeling the local motion, similar to previous work [27,
54], we adopt a node-based clustering mechanism in the motion
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Figure 3: The network architecture of the utilized neural portrait generation module.

feature space. To this end, we utilize the differential pooling and
unpooling method to learn the assignment matrices Sp and Sup
between the output feature map F∗ after global normalization and
the latent nodes, which are formulated as:

Sp = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Mp (F∗)),
Sup = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (Mup (F∗)),

(4)

where Mp and Mup denote the corresponding weight-sharing MLP
layers, respectively. Then, based on these assignment matrices, we
follow [54] to obtain the hybrid motion feature map Smot ∈ R𝑁×𝐶

which encodes both the global and local motion similarities of
the correspondence candidates. Finally, both Sapp and Smot are
concatenated into a MLP-based classifier to generates the final
matching scores {𝑐𝑖 } for robust outlier rejection.
Loss Function.We train our context-aware correspondence learn-
ing network with a binary classification loss 𝑳c, and an epipolar
distance loss 𝑳e:

𝑳 = 𝑳c + _e𝑳e . (5)
Here, 𝑳c is a typical binary cross entropy loss between estimated
inliers set M and the ground truth inliers set Mgt. The epipolar
distance loss 𝑳e is derived from the estimated essential matrix to
model the epipolar geometry constraint. Specifically, we adopt the
weighted eight-point algorithm to estimate the essential matrix
E, which is differentiable with respect to the predicted inliers M
and makes it possible to regress E in an end-to-end manner. Then,
the epipolar distance loss 𝑳e is formulated as the sum of epipolar
distance of all inliers as follows:

𝑳e =
∑

(𝑝1
𝑖
,𝑝2

𝑖
) ∈M

∥dist(𝑝1𝑖 , 𝑝
2
𝑖 , E)∥

2
2 , (6)

where 𝑝1
𝑖
and 𝑝2

𝑖
are the feature coordinates of the 𝑖-th matched cor-

respondence inlier fromM. And the epipolar distance is formulated
as follows:

dist(𝑝1𝑖 , 𝑝
2
𝑖 , E) =

𝑝2
𝑖

TE𝑝1
𝑖√

∥E𝑝1
𝑖
∥2[1] + ∥E𝑝1

𝑖
∥2[2] + E𝑝2

𝑖
∥2[1] + ∥E𝑝2

𝑖
∥2[2]

,

(7)
where t[ 𝑗 ] denotes the 𝑗-th element of a vector t.
Geometry Generation. Based on the above final per-pair match-
ing score from our corresponding learning scheme, we can reject
those outliers to enable robust correspondence matching. To this

end, after outlier rejection, we perform a global bundle adjust-
ment to optimize both the camera poses of all the input RGB im-
ages and an initial sparse 3D keypoints, which is based on the
incremental Structure-from-Motion system [38]. Furthermore, with
the optimized camera poses, we utilize the traditional shape-from-
silhouette technique [13] to generate a dense initial geometry of
the target, where the human silhouette is obtained by applying
the human parsing method [19]. Such final dense geometry of the
human portrait and the corresponding accurate camera poses of
the input RGB images are utilized to generate the neural portrait
model in the next section.

4.2 Neural Portrait
Recall that the dense initial geometry of the human target obtained
by the shape-from-silhouette technique usually suffers from in-
completeness and reconstruction noise. Thus, a straight-forward
texturing scheme applied to the initial geometry using the input
RGB frames leads to inferior visual results due to the inherently
coarse geometry. To suppress such geometry-related artifact, we uti-
lize a novel neural rendering scheme to synthesize photo-realistic
free-viewpoint rendering results of the portrait, based on only a low-
fidelity 3D point cloud instead of traditional mesh representation.
As illustrate in Fig. 3, our neural portrait scheme assigns a learnable
feature vector f𝑖 for each input 3D point p𝑖 which encodes both the
appearance and contextual information of the human portrait.
Projection and Rasterization. When we render a novel target
viewpoint, we generate a view-dependent feature mapM. Specifi-
cally, we project all points and thus their features onto the target
view and splat points into pixel coordinates on image plane linearly.
Then we apply the Z-buffer method to maintain correct depth or-
dering and hence occlusions. For each background pixel, we assign
a learnable default feature vector \𝑑 . The resulting feature mapM
is formulated as:

M𝑞 [𝑢, 𝑣] =
{ [

f𝑖 ; ®𝑑𝑖
]

(𝑢, 𝑣) ∈ S𝑖

[f0; 0] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

where S𝑖 is the set of pixels in the viewpoint that maps to the same
3D point p𝑖 under splatting. We record all point indexes in this
feature map, so as to back propagate gradients from feature map to
feature vectors.
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Rendering. The U-Net architecture has shown great success in
many applications, such as image denoising, deblurring, and style
transfer. In our setting, we use U-Net to generate a RGB image
at target viewpoint from the view-dependent feature map. Simi-
lar to [1], we adopt the gated convolution layer [52] in network
architecture to handle incomplete and noisy geometry. Projected
depth maps and view directions of pixel rays are also fed into the
rendering network to improve the rendering results and support
view-dependent effects.

To enable light-weight capturing, our method only utilizes a
single RGB camera and do not need a large amount of input RGB
images to supervise the network training like [1]. Therefore, we
utilize generative adversarial network (GAN) for training. We take
U-Net as the generator G(·) to render RGB results and a convolution
network with a binary classifier as the role of the discriminator
D(·).
Network Training. To train our neural portrait network, we uti-
lize the initial dense 3D point cloud and the RGB images with opti-
mizied camera poses from previous stage. For each training sample,
we set one of the input cameras as the target camera and utilize the
corresponding RGB image as groud truth to conduct supervised
training for the generator. Meanwhile, we want the discriminator
can distinguish whether the input image is from the generator. We
utilize the corresponding input RGB image and generated image
pairs for training the discriminator.

Specifically, our loss function consists of a GAN loss 𝑳𝑔𝑎𝑛 and
an image loss 𝑳𝑖𝑚𝑔 . The former one is formulated as follows:

𝑳gan = 𝐸𝑥 [log(D(𝑥))] + 𝐸𝑀 [log(1 −D(G(M)))], (9)

which intends to force the output distribution of U-net genera-
tor closed to the real distribution, so as to provide photo-realistic
rendering results. Besides, we also utilize the following image loss:

𝑳img =
∑
𝑞=1

∥I𝑞 − Ĩ𝑞 ∥22 , (10)

where I𝑞 is the rendering result image in view 𝑞; Ĩ𝑞 is the corre-
sponding ground truth image. The overall loss function is 𝑳 =

_ · 𝑳𝑔𝑎𝑛 + 𝑳𝑖𝑚𝑔 , where _ = 0.2 in our experiments. Recall that
both the projection and rasterization of the 3D feature points are
differentiable. Thus, the gradients from loss function can be back-
propagated to the entire network including feature vectors of the
3D points. We utilize the gradient-based optimizer Adam in all of
our experiments to update both the network parameters and the
feature vectors.

5 EXPERIMENTAL RESULTS
In this section, we evaluate our Neural3D system on a variety of
challenging scenarios. We first evaluate our correspondence learn-
ing scheme, followed by the evaluation of our neural portrait recon-
struction, both qualitatively and quantitatively. The limitation and
discussion regarding our Neural3D system are provided in the last
subsection. Several representative neural portraits reconstructed by
our Neural3D system are illustrated in Fig. 4, where the challenging
appearance details of the portraits, such as the textures in those
face, hand and garment wrinkle regions, are faithfully reconstructed
only using a single consumer-lever RGB camera.

Method Outdoor Indoor
Known Unknowm Known Unknown

RANSAC 7.9 8.8 3.7 2.4
NG-RANSAC 43.1 50.5 23.7 15.9
PointCN 42.6 48.8 21.4 15.8
OANet 43.7 52.6 24.6 17.9
Ours 43.6 54.6 28.4 17.8

Table 1: Comparison with other methods on the Known and
Unknown test sets about YFCC100Mand SUN3D. The results
with RANSAC are provided in terms of mAP(%).

model Known scene Unknown scene
PCN 42.6/5.7 48.8/11.2

PCN + GM 41.1/10.8 51.1 /21.4
PCN + LM 42.9/16.5 52.6/26.6

PCN + LM + GM 43.1/18.6 53.5/28.4
PCN + LM + GM + AM 43.6/19.3 54.6/30.9

Table 2: Ablation study of our correspondence learning
scheme on the known scenes and unknown scenes about
YFCC100M datasets. The results with and without RANSAC
are provided in terms of mAP(%).

5.1 Evaluation of Correspondence
In this section, we evaluate our context-aware correspondence
learning scheme, both qualitatively and quantitatively. To this end,
we utilize both the standard outdoor datasets Yahoo’s YFCC100M [42]
and the indoor datasets SUN3D [46] to validate our scheme quanti-
tatively. We train our network on the subsets of the two datasets
and evaluate the correspondence estimation performance on the
other subsets of the same scenes as the 𝐾𝑛𝑜𝑤𝑛 test set and the
datasets from the other scenes as the 𝑈𝑛𝑘𝑛𝑜𝑤𝑛 test set. For thor-
ough evaluation, we compare against both the traditional baseline
technique 𝑅𝐴𝑁𝑆𝐴𝐶 and the state-of-the-art approaches including
𝑃𝑜𝑖𝑛𝑡𝐶𝑁 [27],𝑂𝐴𝑁𝑒𝑡 [54] and 𝑁𝐺 − 𝑅𝐴𝑁𝑆𝐴𝐶 [10]. We adopt the
standard angular difference between the estimation and the ground
truth and measure the mean average precision (mAP) under accu-
racy a threshold (5◦) for both rotation and translation. As shown in
Tab.1, our approach consistently outperforms the others on both the
Known and Unknown test sets for both the indoor and outdoor data
sets, which illustrates the effectiveness and generalization ability
of our approach to achieve more accurate pose estimation.

We further evaluate the influence of various components in our
context-aware correspondence learning scheme, using the above
Known and Unknown test sets in the YFCC100M dataset. For the
motion module, let 𝑃𝐶𝑁 denote the PointCN block, while 𝐿𝑀 and
𝐺𝑀 denote the local and global motion context blocks, respec-
tively. Besides, let𝐴𝑀 denote our appearance module. Tab. 2 shows
that our full pipeline consistently outperforms the other baseline
variations, yielding the highest mAP. This not only highlights the
contribution of each algorithmic component but also illustrates
that our correspondence learning approach can robustly recover
accurate camera poses.
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Figure 4: Several examples of our neural portrait scanning results using the proposed Neural3D system.

Then, we further evaluate the influence of our pose estimation
scheme in terms of the final neural portrait rendering. To this end,
we compare our Neural3D against the variation with the pose esti-
mation results from the 3D reconstruction software [32], denoted
as𝑤/𝑜_𝑝𝑜𝑠𝑒 . Note that for fair comparison, both w/o_pose and our
Neural3D share the same dense initial geometry and neural portrait
scheme. For further quantitative analysis, we render their neural
portraits into the capturing camera views by taking the input RGB
input as reference only in the visible regions. Note that the residuals
are calculated as the per-pixel Euclidean distances of the RGB val-
ues between the textured results and the color image inputs, where
each color channel is normalized to [0,1]. As shown in Fig. 5, the
results of w/o_pose suffer from pose localization error and blur ren-
dering results, while our Neural3D with the pose estimation scheme
achieves more realistic and immersive rendering, especially for the
detailed texture in the face, hair and garment wrinkle regions. This
evaluation further illustrates the effectiveness of our context-aware
correspondence learning scheme for the neural rendering.

5.2 Evaluation of Neural Portrait
In this subsection, we demonstrate the performance of our neu-
ral portrait scheme by comparing it against other state-of-the-art
human modeling methods, both qualitatively and quantitatively.

For thorough evaluation, we compare our Neural3D with the
traditional shape-from-silhouette technique [13] and the popular
3D reconstruction software [32], denoted as 𝑆𝐹𝑆 and 𝑃ℎ𝑜𝑡𝑜𝑆𝑐𝑎𝑛,
respectively. Note that we apply the refined camera poses with our
correspondence learning scheme to SFS; thus both Neural3D and
SFS share the same initial dense geometry. Besides, both SFS and
PhotoScan utilizes the average texturing scheme provided in the
software [32] to achieve textured results. We also apply our camera
poses instead of the original poses in PhotoScan for further eval-
uation, which is denoted as 𝑃ℎ𝑜𝑡𝑜𝑆𝑐𝑎𝑛_𝑜𝑢𝑟𝑠 . We further compare
against the state-of-the-art image-based 3D human reconstruction
method [36], denoted as 𝑃𝐼𝐹𝑈 .

Figure 5: Ablation study of our pose refinement scheme in
terms of the final neural portrait rendering results. The blue
map indicates the normalized color-coded residual com-
pared with the input color image.

As shown in Fig. 6, PhotoScan, PhotoScan_ours and PIFU suf-
fer from severe geometry reconstruction error, while SFS still fails
to reconstruct realistic texture details even with a water-tight ge-
ometry. In contrast, our Neural3D system achieves significantly
better reconstruction results in a realistic and immersive manner,
especially for the details in the face and hand regions highlighted
by the colored circles in Fig. 6. For quantitative comparison, we
render all the reconstruction texturing results into the capturing
camera views by taking the input RGB input as reference only in
the visible regions and adopt the popular criteria 𝑃𝑆𝑁𝑅 and 𝑆𝑆𝐼𝑀 .
As shown in Tab. 3, our Neural3D consistently outperforms the
other approaches in terns of both PSNR and SSIM. All these quali-
tative and quantitative results above illustrate the robustness and
effectiveness of our approach to generate not only accurate camera
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Figure 6: Qualitative comparison. Our neural portrait achieves muchmore realistic rendering results in the new virtual views.

Method PSNR SSIM
PhotoScan 22.5 0.92

PhotoScan_ours 25.4 0.94
SFS 35.2 0.94
Ours 41.9 0.99

Table 3: Quantitative comparison of our neural portrait
against PhotoScan and SFS in terms of PSNR and SSIM.

poses but also realistic rendering results with fine details, from only
a single RGB camera.

5.3 Limitations and Discussion
We have demonstrated compelling neural free-viewpoint rendering
results of the human portraits in a variety of scenarios. Nevertheless,
as the first trial to combine pure RGB-based human modeling with
both data-driven correspondence learning and neural rendering, the
proposed Neural3D system is subject to some limitations. First, even
though our system enables convenient portrait capture in real-time
with a portable device, the training process of our neural portrait
to provide a visually pleasant rendering results takes about 6 to 8
hours, which is not suitable for some real-time human-computer-
interaction (HCI) applications. However, our Neural3D system still
brings new possibility for convenient and realistic rendering of a
human portrait. Even if the goal is to upload the model for using in
a VR/AR game, an overnight process remains valuable. Secondly,
our current pipeline focuses on human portrait reconstruction,
without modeling the background. Thus, severe blur occurs in the
background scenes due to the lack of constraints of our neural

rendering in those regions. This could be alleviated in the future
by modeling the background of the captured scene explicitly as a
static panoramic image in our current framework. Besides, it is an
promising direction to further modify the initial geometry using
the neural portrait rendering.

6 CONCLUSION
We have presented Neural3D, a novel neural human portrait scan-
ning system using only a single RGB camera, which combines
RGB-based human modeling with both data-driven correspondence
learning and neural rendering. Our context-aware correspondence
learning scheme enables accurate camera pose estimation, while
our neural portrait scheme further suppresses the geometry error
and generates visually pleasant rendering results in novel views.
Our experimental results demonstrate the effectiveness of Neural3D
for providing realistic and immersive free-viewpoint rendering re-
sults of a human portrait, which compares favorably to the other
methods. We believe that it is a significant step to enable convenient
and realistic human modeling, with many potential applications in
VR and AR, gaming, entertainment and human analysis.
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