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ABSTRACT
We present a novel real-time line segment detection scheme called
Line Graph Neural Network (LGNN). Existing approaches require a
computationally expensive verification or postprocessing step. Our
LGNN employs a deep convolutional neural network (DCNN) for
proposing line segment directly, with a graph neural network (GNN)
module for reasoning their connectivities. Specifically, LGNN ex-
ploits a new quadruplet representation for each line segment where
the GNN module takes the predicted candidates as vertexes and
constructs a sparse graph to enforce structural context. Compared
with the state-of-the-art, LGNN achieves near real-time perfor-
mance without compromising accuracy. LGNN further enables
time-sensitive 3D applications. When a 3D point cloud is accessible,
we present a multi-modal line segment classification technique
for extracting a 3D wireframe of the environment robustly and
efficiently.
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•Computingmethodologies→Artificial intelligence;Object
detection; Reconstruction.

KEYWORDS
line segment detection; quadruplet; graph neural network; real-time

ACM Reference Format:
Quan Meng, Jiakai Zhang, Qiang Hu, Xuming He, and Jingyi Yu. 2020.
LGNN: A Context-aware Line Segment Detector. In Proceedings of the 28th
ACM International Conference on Multimedia (MM ’20), October 12–16, 2020,
Seattle, WA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.
1145/3394171.3413784

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MM ’20, October 12–16, 2020, Seattle, WA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7988-5/20/10. . . $15.00
https://doi.org/10.1145/3394171.3413784

Figure 1: Different representations of 2D wireframe: (a)
Grouping pixels to construct line segments [17, 41], which
use sophisticated postprocessing and tend to produce short
and overlapped line segments. (b) Modeling wireframe as a
fully connected graph on line segment candidates [47, 49],
which are time- and memory-consuming and prone to in-
effective inference due to the noisy proposals. (c & d) Our
proposed method of representing line segments as quadru-
plets: (start junction, end junction, line central point, line
shift vector), which enables us to construct a sparse graph on
line segment proposals and learn high-level semantic and
geometric features during message-passing inference.

1 INTRODUCTION
Line segments provide rich information about a scene: creases are
indications of foldings of pliable surfaces, occlusion boundary edges
encode shape information, while textures manifest the appearance
of regions. More importantly, they provide a more precise, com-
pact, and structural representation of a 3D scene. The detected line
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segments further benefit numerous computer vision tasks, ranging
from stereo matching [45] and 3D reconstruction [7, 9, 16, 32, 46]
to image stitching [38] and segmentation [2, 5]. Traditional tech-
niques [1, 3, 11, 18, 37, 40] based on hand-crafted features are vul-
nerable to textureless regions, repetitive textures, illumination vari-
ations, occlusions, etc. More recent deep learning approaches [17,
41, 47, 49] attempt to explore semantic meanings of line segments
to mitigate the problems.

Existing learning-based algorithms tackle the line detection prob-
lem via a predict-then-verify strategy. Pioneering approaches [17,
41] first adopt a deep convolution neural network (DCNN) to pre-
dict junctions as well as a line heat map or an attraction field map.
They then apply sophisticated fusion algorithms for extracting line
segments. Such approaches commonly produce crossing or frag-
mented line segments that are difficult to fix or even differentiate.
More recent methods, including PPGNet [47] and L-CNN [49], first
train a deep CNN to estimate a junction heatmap and then enumer-
ate all junction pairs to verify their connectivities. The verification
step greatly improves line detection quality but is time and mem-
ory consuming and scales poorly with the number of junctions in
an image. For example, on a Tesla P40 GPU, verification over 512
junctions in PPGNet [47] requires about a second.

For many real-life line detection applications, it is critical to
balance between speed and performance. In this paper, we propose
a real-time line detector — Line Graph Neural Network (LGNN).
LGNN can reliably handle a cluttered environment by exploiting
a strong contextual structure between line segments. Specifically,
LGNN employs two main modules: a DCNN module for generating
line segment positions and features and a graph neural network
for reasoning their connectivities. We propose a novel quadruplet
representation - (start junction, end junction, line central point,
line shift vector) - for each line segment, in place of the traditional
junction-junction pairs. The DCNN sets out to predict a line central
point heatmap along with a line shift vector map. We observe that,
for cluttered scenes, the predicted line segments are less fragmented,
where we can reliably map their endpoints to junctions. The GNN
module then takes these line segment candidates as vertexes and
construct a sparse graph to enforce structural constraints.

Our LGNN significantly accelerates the detection speed without
compromising accuracy. We show that LGNN achieves near real-
time performance. On the wireframe dataset [17], LGNN performs
at 15.8 frames per second (FPS) with 62.3% structural AP (sAP) and
a lightweight version achieves 34 FPS with 57.6% sAP. LGNN hence
enables time-sensitive 3D applications: when a 3D point cloud is
accessible and we can map the predicted 2D line segments onto 3D
to determine their types - creases, occlusion edges or texture edges.
We therefore further present a multi-modal edge classification tech-
nique for extracting a 3D wireframe of the environment robustly
and efficiently.

2 RELATEDWORKS
2DLine SegmentDetection. Line segment detection has attracted
a lot of research work. Classical approaches [1, 3, 11, 18, 37, 40] rely
on low-level information, so are susceptible to external conditions.
Recently, Wireframe [17] first adopts two independent networks to

predict line and junction heatmaps parallelly, then combine junc-
tions and lines to produce line segments. AFM [41] re-formulates it
as a region coloring problem and leverage semantic segmentation
networks to predict attraction field map, then group active pixels to
construct line segments with region-growing algorithms similar to
LSD [37]. Both of them need a sophisticated postprocessing method
and tend to produce short line segments because they represent
a line segment as a group of pixels. PPGNet [47] supplements the
line segment dataset with outdoor scenes. L-CNN [49] proposes
line sampling to overcome the data unbalance, and a more reason-
able metric(sAP) to evaluate the structural quality of wireframes.
Both PPGNet and L-CNN represent line segments with endpoints
and enumerate all junction pairs, so they scale poorly with the
time complexity of 𝑂 (𝑛2). In this work, by representing line seg-
ments as quadruplets, our method not only directly get accurate
line segments but also run the fastest.
Objection Detection. Object detection approaches contain two
types of pipelines, namely, region proposal based and regression
based approaches. The former approaches like R-CNN [14], Fast
R-CNN [13], Faster R-CNN [34], R-FCN [4], Mask R-CNN [15] and
etc, generate region proposals at first and then classify each pro-
posal into different object categories. The latter approaches like
YOLO [33], SSD [26], CornerNet [21], CenterNet [8, 48] and etc, re-
move the RoI extraction process and directly classify and regress the
candidate anchor boxes. While the performance of region proposal
based approaches remain in a higher place, they need more compu-
tation and processing time. Our line segment detection approach
inherits merits of both approaches, in which we first predict line
central points and junctions and directly regress other properties,
followed by a light-weight GNN refinement.
Graph Neural Network. Graph Neural Networks can effectively
cope with non-Euclidean data, such as e-commerce [29, 44], cita-
tion network [20, 36], molecules [6, 12], scene relationship [42, 43],
sketch recognition [39] and etc. Recently, Li et al. [22] build a very
deep 56-layer Graph Convolutional Network(GCN) which signif-
icantly boosts performance in the task of point cloud semantic
segmentation. Computer vision is one of the biggest application
areas for graph neural networks. Yang et al. [42] propose a novel
scene graph generation model called Graph R-CNN that reports
state-of-the-art performance. Xu et al. [39] represent sketches as
multiple sparsely connected graphs and designs the Multi-Graph
Transformer that outperforms all RNN-based models. Lu et al. [28]
first apply GNN in image segmentation and achieve about 1.34% im-
provement on the VOC dataset compared to the FCN model. We are
first to formulate wireframe as a sparse graph and enable message
passing. This view allows us to encode larger context information
so that we can decide which line segment is globally significant.
3D Line Segment Detection. Existing 3D line segment detection
methods extract 3D line segments from an unordered point cloud.
These methods mainly include three categories: point based [24],
plane based [35] and image based [25, 27]. Given a point cloud,
point based method identifies the boundary points and fits for the
3D line segment. This method usually mistakes much noise for
boundary points. Plane based method detects planes and intersects
every two adjacent planes to calculate line segments. This method
may fail to find the terminals of the intersection line. Image based
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Figure 2: An overview of the proposed LGNN. Our model first uses a convolutional backbone network to produce a heatmap
for line central point, a heatmap for junction, and a line shift vector map, which are assembled into a sparse graph of line
segment quadruplets. We then introduce a deep ResGCNs to update the semantic and geometric features of line segments
simultaneously. The resulting line representations are fed into an MLPs to score each line segment.

methods project point cloud into images and apply 2D line segment
detector to extract line segments, finally re-project them to the
point cloud. These methods only use hand-crafted features, so tend
to produce short and crossed line segments, which are not good
representations of the scene. In this work, we implement a structural
3D wireframe extraction algorithm based on LGNN. We also extract
plane information to optimize the 3D line segment.

3 METHODS
3.1 Overview
In this section, we introduce our line segment detection framework,
which aims to delineate salient 2D line boundaries in an image.
Our goal is to achieve high efficiency by exploiting rich properties
of line segments, which enable us to effectively reduce the search
space in localization and simplify the model structure. To this end,
we develop a novel line segment detection method that consists
of two main modules: a Multitask Learner Module and a Relation
Reasoning Module. Given an input RGB image, the first module
(Multitask Learner) is a multi-head deep convolutional network
that extracts several key properties of line segments, such as their
endpoints and orientations. We then generate a set of line segment
and junction proposals, and construct a sparse graph on line candi-
dates with junctions as graph edges. The second module (Relation
Reasoning) is a graph convolutional network that augments the
line features with context cues, which are subsequently used for
final line segment prediction. An overview of our framework is
shown in Fig. 2.

The rest of this section first introduces our line representation
in Section 3.2, followed by two model components with inference
process in Section 3.3 and Section 3.4. Finally, we describe our
training strategy and multi-task loss function in Section 3.5.

3.2 Line Segment Representation
Given an RGB image 𝐼 ∈ R𝑊 ×𝐻×3, we first denote the set of line
endpoints or junctions as J and the set of line central/middle point
as C. In order to generate line segment proposals efficiently, we

represent a line segment as a quadruplet 𝑣 = ( 𝑗1, 𝑗2, 𝑐, s), in which
𝑗1 and 𝑗2 ∈ J are the two endpoints of the line segment 𝑣 , 𝑐 ∈ C
is its central point, and s ∈ R2 is a 2D shift vector indicating the
line direction and segment length.

Concretely, we denote the 2D coordinates of the endpoints 𝑗1, 𝑗2
and the central point 𝑐 as p𝑗1 , p𝑗2 , p𝑐 ∈ R2, respectively. The 2D shift
vector s of the line central point 𝑐 satisfies the following relations:

(p𝑗1 , p𝑗2 ) = (p𝑐 − s, p𝑐 + s) (1)
To avoid ambiguity of directions, we stipulate that s is always
pointing to the endpoint closer to the right side of the image.

To capture relations between line segments, we further represent
the entire set of line segments in an image as a graph G = (V,A),
whereV stands for the set of the unordered line segments, A is the
adjacent matrix representing the connectivity between these line
segments. For two line segments, 𝑣𝑘 and 𝑣𝑙 , if they have a common
endpoint, i.e., they are connected, then both A𝑘𝑙 and A𝑙𝑘 equal
one; and otherwise, they are zero. Our goal is to develop a deep
network to predict the graph G from the input image 𝐼 , which will
be described in detail below.

3.3 Mutlitask Learner Module
Our first module, the Multitask Learner, takes the image 𝐼 as input
and generates an initial estimation of line segment properties includ-
ing their endpoints, central points and shift vectors. To achieve this,
we develop a multi-head convolutional network with two compo-
nents: a backbone ConvNet for feature extraction and a prediction
module that outputs three properties of the line segments.

In this work, we adopt a stacked hourglass network [31] as our
backbone. Using multiple bottom-up and top-down inference across
scales, this backbone network produces a rich set of feature maps
F ∈ R𝑊 ′×𝐻 ′×𝐷 , where𝑊 ′, 𝐻 ′ and 𝐷 are the width, height and the
number of channels of the feature maps.

The prediction module consists of three parallel convolutional
heads, generating dense output maps for endpoints, central points
and shift vectors, respectively. Each of the endpoint and central
point heads produces an output map that indicates the confidence
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scores of each location belonging to the junction set J or the
line central point set C. We adopt a heatmap representation for
those keypoints as in the human pose estimation. Besides, due
to the discretization effect caused by the output stride, we also
produce two offset maps to predict offsets for junctions and line
central keypoints. The shift vector head simultaneously regresses
the direction and (half) length of the line segments for each location.

We apply non-maximum suppression to remove duplicated key-
points and extract the local maximum in the line central point
heatmap as candidates. To generate consistent line segment and end-
point/junction proposals, we introduce a simple nearest neighbor-
based alignment procedure to match the predicted endpoints to
the pairs of central point and shift vector and remove noisy center
point candidates as they are less reliable.

Specifically, given a central point candidate 𝑐 and its shift vector,
ŝ, we first generate a 2D line segment proposal 𝑣 with endpoints 𝑗1
and 𝑗2 by shifting the line central point 𝑐 in two opposite directions
with the vector ŝ as in Eq. 1. We then match the endpoints of 𝑣 to
the predicted endpoint candidates. In particular, we find the closest
endpoints to each generated line segment. If the total distance is
below a threshold 𝜃 , we will replace the computed endpoints 𝑗1 and
𝑗2 by the matched endpoint candidates. If the distance exceeds 𝜃 ,
we will remove the line segment candidate. The isolated endpoint
candidates will also be filtered out after matching. Finally, we build
a candidate graph Ĝ = (V̂, Â) using the remaining line segment
and endpoint candidates, in which the vertex set V̂ comprises
line segments and the adjacent matrix Â encodes the connectivity
between lines due to shared endpoints.

3.4 Relation Reasoning Module
Given the candidate graph Ĝ, we now introduce our Relation Rea-
soning Module, which is a graph neural network defined on the
top of Ĝ. Each vertex in the graph neural network is associated
with a line segment proposal and is connected to other line pro-
posals based on the adjacent matrix Â. The graph neural network
takes line segment features as input and conducts global reasoning
through message passing, resulting in a context-aware representa-
tion for each line proposal. We then predict a binary label for each
graph vertex to indicate whether it is a foreground line segment.

Concretely, we first extract two sets of line segment features
to encode their semantic and geometric property. For semantic
features, we adopt the LoI pooling [49], which max-pools and con-
catenates convolutional features from a set of uniformly sampled
points on the line segments. Let the number of sampled points be
𝑁𝑝 and the pooling stride be 𝛿 , we denote the semantic feature of
vertex 𝑣 ∈ V̂ as x̂𝑠𝑣 ∈ R𝑁𝑝 ·𝐷/𝛿 . For geometric features, we concate-
nate the line central point’s coordinate p𝑐 and the shift vector ŝ,
which is denoted as x̂𝑝𝑣 .

Given the input features, we initialize the vertex representa-
tions of graph neural network by computing an embedding of line
segment features:

e(0)𝑣 = Φ(x̂𝑠𝑣), g(0)𝑣 = Ψ(x̂𝑝𝑣 ), 𝑣 ∈ V̂ (2)

where e(0)𝑣 and g(0)𝑣 ∈ R𝑑 are the embedded representations of the
semantic and geometric features of the vertex 𝑣 . Here Φ is a two
layer perceptron, and Ψ is simply a linear projection.

We update the semantic and geometric representations in par-
allel by running two separate message passing procedures in the
graph in order to capture both semantic and geometric context. To
achieve this, we first compile features from all the neighborhoods
of vertices in our graph convolutional network and then perform
a non-linear transformation on the aggregated features to update
the representations of the vertices. To capture long-range context,
we stack multiple layers of such graph convolutions.

Specifically, we adopt the residual GCN blocks [22] for mes-
sage computation and vertex feature update within each layer. Let
E = [e1, · · · , e | V̂ |] and G = [g1, · · · , g | V̂ |] be the collections of
semantic and geometric representations of the vertices, we update
their embedding in the 𝑙 + 1 layer as follows,

E(𝑙+1) = 𝜙

(
D̃− 1

2 ÃD̃− 1
2 E(𝑙)W(𝑙)

𝑠

)
+ E(𝑙) (3)

G(𝑙+1) = 𝜙

(
D̃− 1

2 ÃD̃− 1
2G(𝑙)W(𝑙)

𝑔

)
+ G(𝑙) (4)

where Ã = Â+I, D̃ is a diagonal matrix with D̃𝑖𝑖 =
∑

𝑗 Ã𝑖 𝑗 .W
(𝑙)
𝑠 and

W(𝑙)
𝑔 are the weight parameters in the 𝑙-th layer. 𝜙 is an activation

function, and we simply choose ReLU funcion.
We stack 𝑛 residual GCN blocks to update the semantic and

geometric features of vertices, which are concatenated to generate
the final line segment representation: H = [E(𝑛) ,G(𝑛) ] ∈ R | V̂ |×2𝑑 .
Finally, we adopt a multi-layer perceptron to classify line segments
into foreground or background based on the updated line segment
features H. During inference, we also attach a sigmoid function to
generate the final score for each line segment.

3.5 Model Training
To train our model, we develop a multi-task loss to supervise the
learning of two model modules jointly. The loss function consists
of two parts, one for the Multitask Learner Module and one for the
entire network:

𝐿 = 𝐿𝑀𝐿 + 𝐿𝑅𝑅 (5)

where 𝐿𝑀𝐿 denotes the loss terms for the first module and the 𝐿𝑅𝑅
is the loss terms imposed on the output of the second module.

The loss term 𝐿𝑀𝐿 includes the loss terms for the four outputs
of the Multitask Learner Module as follows:

𝐿𝑀𝐿 = 𝜆 𝑗𝐿𝑗 + 𝜆𝑐𝐿𝑐 + 𝜆𝑜𝐿𝑜 + 𝜆𝑠𝐿𝑠 (6)

where the loss item 𝐿𝑗 is for junction keypoints, 𝐿𝑐 is for line central
keypoints, 𝐿𝑜 is for offset of junction keypoints and line central
keypoints, 𝐿𝑠 is for line shift vector, and 𝜆 𝑗,𝑐,𝑜,𝑠 are the weights of
the corresponding loss item.

Specifically, we use the binary cross entropy loss 𝐿𝑗 for junc-
tion/endpoint prediction, and

𝐿𝑗 = − 1
𝑁𝑝

∑︁
𝑗

(𝑦 𝑗 log(𝑦 𝑗 ) + (1 − 𝑦 𝑗 ) log(1 − 𝑦 𝑗 )) (7)

where𝑦 𝑗 is the binary junction indicator and𝑦 𝑗 is the predicted junc-
tion probability. 𝑁𝑝 is the number of pixels in the output heatmap.

For the line central point prediction, we use the focal loss [23] for
line central point estimation due to unbalanced positive/negative
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Figure 3: Flowchart of the 3D line segment detection. Given a sequence of RGBD images, we first detect 2D line segments and
surface planes from RGB and depth, respectively. These results are subsequently fused into a 3D wireframe based on 2D-3D
and line-plane consistency.

distribution:

𝐿𝑐 = − 1
𝑁𝑝

∑︁
𝑐

{
(1 − 𝑦𝑐 )𝛼 log (𝑦𝑐 ) if 𝑦𝑐 = 1

(1 − 𝑦𝑐 )𝛽 𝑦𝛼𝑐 log (1 − 𝑦𝑐 ) otherwise
(8)

where 𝑦𝑐 is ground truth scores of line central points and 𝑦𝑐 is pre-
dicted line central point probability. 𝛼 and 𝛽 are hyper-parameters.
We use 𝛼 = 2 and 𝛽 = 4 as in [21].

We employ l1 loss for the junction and line central point offset
regression loss 𝐿𝑜 , and the shift vector prediction loss 𝐿𝑠 .

The loss term 𝐿𝑅𝑅 is defined for the final outputs from the MLPs
of the Relation Reasoning Module. Here we use the binary cross-
entropy loss for line segments classification.

We train our network in a joint manner by computing an ap-
proximate gradient over the entire network, in which the gradient
calculation treats the proposal generation is fixed in each iteration.
This “end-to-end" training strategy works well in practice for our
model and is simple to implement.

4 3D WIREFRAME EXTRACTION
A unique advantage of our LGNN-based line segment detector is
its speed. Compared with the most accurate technique [49], LGNN
slightly sacrifices the performance but nearly doubles the speed. The
near real-time performance can benefit a number of applications.

When combined with 3D scanning, LGNN provides a viable solu-
tion for space measurement. Conceptually 3D scanning techniques
such as LiDAR or time-of-flight can already produce 3D point cloud
data amenable for analysis. In reality, the point cloud is generally
of a low resolution and contains strong noise. We observe that
walls, in particular, intersection between different walls, form line
segments and as long as we can detect them, we can use the results
for measuring the dimensionality of the space.

However, there are multiple challenges. Our line detector, same
as any existing techniques, detects both geometric and texture edges.
For the detected lines to be useful, it is essential to distinguish these
lines: the key to space measurement is creases that correspond to
junctions of walls. We employ a real-time line type classification
algorithm on top of LGNN. Fig. 3 shows our processing pipeline.

We assume a moving 3D scanner whose position is calibrated in
real-time using Visual SLAM techniques such as ORB-SLAM [30].
The point clouds are fused on the fly. Given each line segment
provided by LGNN, we check if it corresponds to crease.

Specifically, we observe that it corresponds to crease when the
two sides of the line segment correspond to two different planes (i.e.,
have very different normal directions). For texture lines, the two
sides would correspond to the same plane. However, for occlusion
boundaries, the two sides can also correspond to different planes as
creases. Nonetheless, we can easily identify occlusion boundaries
since the points on the two sides will have large depth disparity.
Further, regular rooms have walls perpendicular to each other and
therefore we can check if the normals are orthogonal to further
improve accuracy on crease detection.

Two key steps in the approach above are 1) to group 3D points in
terms of planes that they belong to and 2) to stretch line segments
as the camera moves, to avoid fragmentation. Fig. 3 shows the
complete pipeline of our technique: using a sequence of RGBD
frames as input, we use LGNN to extract, for every single frame,
line segments. We maintain a global 3D plane set and a global 3D
line set. To maintain the 3D plane set, we implement a point-plane
merging technique that adds newly detected 3D points to the set.
To maintain the 3D line set, we use the plane set to classify the 2D
lines detected by LGNN and refine the set on the fine. Both steps
can be implemented in real time.

To elaborate, we apply LGNN on an RGB frame and the fast
plane detection method [10] on the depth channel. The difficulty is
that once we move the camera, we need to merge newly detected
points with the existing ones. Further, the RGBD sensor is generally
of a low resolution and the new points will slightly deviate from the
actual plane. To handle that, we record the total number of already
scanned 3D points 𝑁𝑖 and label every point with a unique plane id 𝑖 .
When new 3D points become accessible, we add a plane Π𝑛𝑒𝑤 into
global plane set with a point count 𝑁𝑛𝑒𝑤 (i.e., how many points in
Π𝑛𝑒𝑤 ) and normal 𝑛𝑛𝑒𝑤 . We set out to determine if Π𝑛𝑒𝑤 should
be merged with the existing set or should be added as a new one.
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To do so, we project the global planes into the current RGB image
via standard graphics rasterization. We then calculate its overlap
count 𝑁𝑖 of projected global plane Π𝑖 with respect to the points in
Π𝑛𝑒𝑤 . We define overlap ratio 𝑟𝑖 = 𝑁𝑖

𝑁𝑛𝑒𝑤
. Finally, we merge Π𝑛𝑒𝑤

with Π𝑚𝑎𝑥 that has the maximum overlap ratio with Π𝑛𝑒𝑤 . If 𝑟𝑚𝑎𝑥

exceeds a threshold and the normals of 𝑛𝑛𝑒𝑤 and 𝑛𝑚𝑎𝑥 are close
enough, we will merge them into one plane. Otherwise, we will
create a new plane and add it to the global plane set.

For line segment classification, we simply build a histogram in
terms of the plane id of the points that lie within a range on both
sides. If the histogram contains a very high peak that corresponds
to a single id, the line is then deemed as a texture edge. If the
histogram has two similar peaks of different ids and the depths of
the points are similar, the line segment is then deemed as crease.
Otherwise, it is deemed as an occlusion boundary. We further label
the creases with the indexes of its two adjacent planes so that we
can match these line segments in following frames.

The classification procedure avoids fragmentation of line seg-
ments that correspond to creases: we can merge creases that corre-
spond to the same pair of junction planes (i.e., the same plane ids).
In fact, we can obtain the final line segment by simply computing
the intersection line of the two planes. Fig. 3(b) shows several typi-
cal examples of the line segment classification results. Finally, we
can use the merged creases to obtain a wireframe model of the 3D
environment and then measure the space, as shown in Fig. 3(d).

5 EXPERIMENTS
In this section, we introduce details of our implementation and
evaluate the proposed line segment detector with existing state-of-
the-art line segment detectors. Then, we visualize the results of our
3D wireframe detection system.

5.1 Implementation Details
We stack two hourglass networks as our backbone, for each input
image, we first resize it to the size of (512, 512, 3) and output a
feature map with the size of (128, 128, 256). Then, we feed the
intermediate feature map into five network heads and produce
junction heatmap, line central point heatmap, junction offset map,
line central offsetmap, and line shift vectormap. During the training
phase, the number of proposals of junctions is two times the number
of ground truth junctions and with the maximum value of 300.
During the evaluating period, we set a threshold of 0.008 to choose
the most likely junctions. To get line segment quadruplets, we
set the threshold of 𝜃 of 15 to get matched line segments. For
the LoIPooling, we first uniformly choose 𝑁𝑝 = 32 middle point
features along each line segments, then apply a max-pooling with
the stride of 4 to get the flattened semantic line feature of size 2048.
For graph neural network, we first embed the semantic feature and
geometric feature to the same size of 256, then stack several residual
GCN blocks to update the feature. Finally, we use a two-layer MLPs
with hidden layers of the size of 32 to classify each line segment.

We train LGNN from scratch using ADAM optimizer [19], with
an initial learning rate of 1.0𝑒 − 3 and weight decay of 1.0𝑒 − 4 on a
single GPU P6000. We set batch size to 10 for the fastest training
speed. To dynamically adjust the learning rate based on validation

Methods sAP FPS

Wireframe [17] 6.0 3.9
AFM [41] 27.5 12.0
L-CNN [49] 63.0 9.5
Ours-lite 57.6 34.0
Ours 62.3 15.8

Table 1: Performance comparison of line segment detec-
tion approaches on the wireframe dataset [17]. We adopt
sAP [49] as our evaluationmetric and report the average FPS
on the test set of wireframe [17].

measurements, we adopt the ReduceLROnPlateau1 scheduler with
the patience of zero epoch and factor of 0.5. We augment the wire-
frame dataset with standard strategies including flipping vertically,
horizontally, and centrally for images and annotations to overcome
overfit.

5.2 Performance Evaluations
We evaluate our line segment detection performance on the wire-
frame dataset [17], which contains 5, 000 training images, 462 test-
ing images. For faster training, we preprocess the wireframe dataset
to generate ground-truth keypoint, offset and shift vector maps.
Specially, we generate ground-truth line central point maps by us-
ing the 1D Gaussian kernel along each line segment. This step is
crucial for our network to converge well.

LGNN vs. State-of-the-Art. We have compared our LGNN with
the state-of-the-art line segment detection algorithms: AFM [41]
and L-CNN [49], with the same wireframe dataset [17], the same
training and testing split, and the same hardware environments.

We experiment with the sAP metric which is proposed by L-
CNN [49] to evaluate the performance of these methods. The sAP
metric for line segment detection properly penalizes for the over-
lapped and incorrectly connected line segments, so is a more rea-
sonable metric for evaluating the structural quality of wireframes
comparedwith the heatmap-basedmetric —𝐴𝑃𝐻 , which treats each
pixel independently. As reported in Table 1, our method achieves
comparable results while runs the fast.

We visualize results of the proposed LGNN and other methods
in Fig. 4. We can see that our approach is capable of extracting
complete and cleaner line segments compared with AFM [41] and
L-CNN [49]. Treating each line segment as a quadruplet, we get
an accurate description of each line segment. Conversely, AFM
generates line segment by greedily grouping pixels, this way usually
fails to guarantee a complete and accurate line segment. Compared
with L-CNN [49], although it gets the best sAP performance, it
produces more overlapped or close co-linear line segments. Our
method suppresses most of these line segments so that our results
look cleaner.

Ablation Studies. In this section, we run several ablation exper-
iments to study the Relation Reasoning Module in our proposed
method:

1For eg. https://pytorch.org/docs/stable/optim.html?highlight=reducelronplateau#
torch.optim.lr_scheduler.ReduceLROnPlateau
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Figure 4: Qualitative results on 2D line segment detection. First row:AFM[41]; Second row: L-CNN [49]; Third row: LGNN(ours);
Fourth row: Ground truth. Our method achieves competitive results with real-time efficiency.

Figure 5: Given a sequence of RGBD images and camera poses as inputs, LGNN enables a 3D wireframe parsing algorithm to
detect structural line segments in real-time, and to fuse with estimated planar surfaces for online 3D scene reconstruction.

(i) We experiment with several types of line segment features:
only semantic feature; only geometric feature; both semantic and

geometric feature; semantic feature, geometric feature, and key-
point scores. We can see that effectively combining semantic and

Poster Session H3: Vision and Language MM '20, October 12–16, 2020, Seattle, WA, USA

4370



semantic
geometric

scores sAPcoord shift

✓ 61.4
✓ ✓ 61.7
✓ ✓ ✓ 62.3
✓ ✓ ✓ ✓ 61.4

Table 2: Ablation study on multiple features in the Rela-
ton Reasoning Module. ’coord’ represents the line central
point position, ’shift’ represents the line shift vector, ’scores’
represents the 3d concatenated keypoint scores of the line
quadruplet.

geometric feature ensures the best line segment prediction perfor-
mance. We also attempt to add the keypoint scores as an additional
feature, which however can not further improve the performance.
We conjecture that this might be caused by the redundancy and
noisy nature of the keypoint scores.

0 1 2 3 4

Layers of GCN block

60.0%

60.5%

61.0%

61.5%

62.0%

62.5%

63.0%

s
A

P

Figure 6: Model performance using different layers of Res-
GCNs in the Relation Reasoning Module. We show the sAP
on the wireframe [17] test set for 0, 1, 2, 3, and 4 layer Res-
GCNs.

(ii) We also evaluate our Relation Reasoning Module with differ-
ent layers of ResGCNs. In Fig. 6, we achieve the best performance
with three layers ResGCNs. The performance of shallower Res-
GCNs shows a steady decrease. When the number of layers drops
to zero, i.e., does not pass message, there is a sharp performance
gap. Compared with MLPs, ResGCNs obtains an absolute gain of
1.9% in terms of sAP. The deeper ResGCNs also has a lower sAP
partially due to the difficulty in model learning.

For a fair comparison among CNN, MLP, and GCN, we add CNN
layers to the CNN backbone or substitute GCN with MLP in our
proposed Relation Reasoning Module so as to keep the same layers
and the same feature dimensions. We have experimented that GCN
obtains an absolute gain of 1.9% in terms of sAP, while MLP and
CNN only obtain 1.1% and 0.0%, respectively. We conclude that line
segment detection benefits greatly from ResGCNs which can more
effectively aggregate and cope with context information.

3D Wireframe Extraction. We have further tested our 3D wire-
frame extraction technique in multiple scenes. Fig. 5 and Fig. 7
show two typical examples, a medium sized roughcast room and

Figure 7:Wireframe parsing results on a large robotic lab. (a)
Illustration of the overall scene as a panorama. (b & c) Point
cloud and results of plane detection. (d & e) 3D wireframe
result and its overlay with the point cloud.

a large robotic lab. Both rooms were pre-scanned using the Faro
3D sensor. We simulate procedure 3D scanning by position a vir-
tual camera at the center of the room and the camera rotates to
capture a sequence of RGBD images. Fig. 5 and Fig. 7 show that
our system manages to extract accurate, complete and structural
line segments in both cases, automatically forming high quality
wireframe 3D models, a function largely missing in existing 3D
scanning solutions. Recall that the Faro scanner still cannot recover
regions occluded from the viewpoint of the scanning location, nor
can it recover specular regions such as windows. The robotic lab
scene is particularly challenging as direct mapping from 2D line
segment to 3D introduces strong noise due to large depth range.
Our technique, however, manages to not only reliably detect the
structural and texture lines but also accurately determine their 3D
locations. Fig. 7 (e) shows that our extracted 3D wireframe fits well
with the point cloud.

6 CONCLUSIONS
We have introduced a novel yet effective line segment detection
method based on graph neural network. By representing each line
segment as a quadruplet and all line segments in an image as a
sparse graph, our method manages to not only extract structural
line segments but also greatly reduce the computational cost. Bene-
fiting from deep residual graph neural network, our method can
effectively incorporate both semantic and geometric features of line
segments.

Our future work will extend the LGNN in several directions.
Firstly, with additional semantic annotations, we can jointly infer
the geometric attribute and semantic label of each line segment for
more coherent wireframe reconstruction. In addition, it is desirable
to integrate line and plane detection for more robust 3D scene
parsing. Furthermore, we will go beyond straight lines and consider
other types of curved object boundaries in complex scenes.
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