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Abstract— Recent progresses in visual tracking have greatly
improved the tracking performance. However, challenges such
as occlusion and view change remain obstacles in real world
deployment. A natural solution to these challenges is to use
multiple cameras with multiview inputs, though existing systems
are mostly limited to specific targets (e.g. human), static cameras,
and/or require camera calibration. To break through these
limitations, we propose a generic multiview tracking (GMT)
framework that allows camera movement, while requiring neither
specific object model nor camera calibration. A key innovation
in our framework is a cross-camera trajectory prediction net-
work (TPN), which implicitly and dynamically encodes camera
geometric relations, and hence addresses missing target issues
such as occlusion. Moreover, during tracking, we assemble
information across different cameras to dynamically update a
novel collaborative correlation filter (CCF), which is shared
among cameras to achieve robustness against view change. The
two components are integrated into a correlation filter tracking
framework, where features are trained offline using existing
single view tracking datasets. For evaluation, we first contribute
a new generic multiview tracking dataset (GMTD) with careful
annotations, and then run experiments on the GMTD and
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CAMPUS datasets. The proposed GMT algorithm shows clear
advantages in terms of robustness over state-of-the-art ones.

Index Terms— Deep learning, multiview, tracking, correlation

filter, trajectory.
I. INTRODUCTION

ISUAL object tracking is a fundamental problem in

computer vision. The existing tracking approaches can
be classified by the number of cameras and targets. For
single-camera-single-target tracking, there are two popular
main-stream branches of approaches. One branch is based on
correlation filter, which trains a regressor based on the prop-
erties of circular correlation and Fourier domain operations
[1]-[3]. These approaches reach a real-time tracking speed
with hand-craft low-level features. References [2], [3] also
exploit deep features and show more robustness in relative
tasks. The other branch formulates the problem as detection/
classification tasks [4]-[6]. However, their performance degen-
erate due to relatively poor diversity of training samples.

Moreover, object occlusion in the scene can harshly cut
down the performance of single-camera trackers. Under the
single camera multiple targets setting, object tracking is for-
mulated as a detection and matching problem. Objects in
each frame will be firstly detected and then re-identified in
the continuous frames [7]-[9]. But their detector may be
significantly affected by occlusions. Meanwhile, these trackers
typically only handle certain groups of targets, e.g. pedestrians,
vehicles.

Among different tracking tasks, we focus on generic (also
known as model-free) visual tracking, which requests little
prior information about the tracking target and has been inten-
sively studied due to its wide range of applications. Despite the
significant progresses in tracking algorithms, tracking in the
real world is still challenging especially when target appear-
ance is distorted or damaged due to view change or occlusion.

A natural way to alleviate the above issues is to use multiple
cameras for tracking, which provides important multiview
information for handling cross-view target appearance change
and occlusion. Existing multiview tracking algorithms, how-
ever, typically focus on specific targets such as human, and
often rely heavily on detection or re-identification models.
Another limitation is that cameras are often assumed to be sta-
tionary, so background subtraction and/or camera calibration
can be used to facilitate target localization. These limitations
largely harm the generalization of multiview tracking to real
world applications. Consequently, effectively using multiple
cameras for generic visual tracking remains an open problem.
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To address the above mentioned issues, we propose a novel
generic multiview tracker (GMT) in this paper by encoding
rich multiview information with learning-based strategies.
A key component in GMT is a cross-camera frajectory predic-
tion network (TPN), which takes tracking results from reliable
views to predict those for unreliable ones. TPN effectively
addresses the problem caused by occlusion or serious target
view change. Another novel component in our GMT is the
collaborative correlation filter (CCF), which assembles cross-
camera information to update a correlation filter. The filter is
shared among different views, and hence improves tracking
robustness against view change. TPN and CCF are integrated
into the correlation filter tracking framework, where the fea-
tures are trained offline using existing single view tracking
datasets.

For evaluation, we first construct a new generic multi-
view tracking benchmark (GMTD). Then, the proposed GMT
algorithm is tested on this dataset, and demonstrates clear
advantages in terms of robustness in comparison with state-
of-the-art tracking algorithms.

The contributions of this paper are summarized as follows:

o We propose a learning-based generic multiview tracking
framework, which requires little prior information about
the tracking target, allows camera movement and requires
no camera calibration.

o We adopt the novel cross-view trajectory prediction
network that encodes camera geometric relations for
improving tracking robustness.

o We use a collaborative correlation filter that learns
an online cross-view model and hence achieves natural
robustness against view change.

o We contribute a new generic multiview tracking dataset
with manual annotations per frame, which is expected to
further facilitate research in related topics.

The source code and the dataset will be released to public with
the publication of this paper.

II. RELATED WORK
A. Generic Single View Visual Tracking

Visual object tracking is one of the most fundamental tasks
in computer vision and has attracted a great amount of research
efforts. It is beyond the scope of this paper to review all
previous work in tracking. In the following section, we choose
to review some of the most relevant ones, including correlation
filter-based trackers, and CNN-based trackers.

Our work is most related to correlation filter-based trackers.
Based on Discriminative Correlation Filters (DCF), MOSSE
is proposed in [10] to efficiently train the correlation filter by
minimizing the sum of the squared error between ground-truth
and output in the Fourier domain. The idea is later adopted
and extended in Kernel Correlation Filter tracking (KCF) [1]
and since then starts to gain great amount of attention. Among
many tracking algorithms along the line, the series proposed by
Danelljan et al. [2], [3], and [11] and Bhat et al. [12] provide
the main backbone to our study. In these studies, DSST [13]
and fDSST [11] use multiple correlation filters to estimate
object translation and scale separately. C-COT [2] further
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enhanced predictions by learning from multi-resolution feature
maps. ECO [3] and ECO+ [12] make further improvements on
feature representation, sample space management and online
update scheme in order to obtain more intuitive tracker and
win both accuracy and efficiency.

Another line of tracking algorithms, which use deep learn-
ing for feature representation, are the CNN-based trackers.
Reference [14] uses network to map an exemplar and
the search region to a response map. Siamese network-
based trackers [15] locates target object by matching initial
object appearance. Siamese Fully Convolutional networks
(SiameseFC) [16] solves the problem by training a fully
convolutional Siamese architecture to evaluate the semantic
similarity between proposals and target image. Utilizing light-
weight CNN network with correlation filters, DCFNet [17]
performs real-time tracking. Recent extensions continuously
improve the performance such as in [18], [19].

Moreover, our work explicitly addresses occlusion and
target view change, which have been studied explicitly as well
in some single view tracking algorithms. One way to resolve
the appearance variation of the target is to maintain effective
sample sets [3], [20], [21], which involves balancing different
aspects of the target, for correlation filters online-training.
Another strategy is conducting complementary information,
for example, [22] makes use of spatial information, [23]
enrolls flow between frames as part of features, [24] add a
semantic branch to enhance prediction. For occlusion, there
are part-based correlation filter trackers like [25]-[27], which
learn target appearance in parts and tend to be robuster to
partial-occlusion. When targets have strong structure relation,
like pedestrians in RPAC [28], KCFs are assigned to five
different parts of each target for robustness. [20], [21], [29] set
thresholds to evaluate the results of correlation filtering.
Mei et al. [30] investigate sparse representation for occlusion
detection. MUSTer [31] avoid drifting and stabilize tracking
by aggregating image information using short- and long-term
stores.

Different from all above-mentioned methods, our study
focuses on multiview visual tracking that takes input streams
from multiple cameras simultaneously. While borrowing some
components from these single view tracking algorithms,
we develop novel strategies such as cross-view trajectory
prediction and a multiview collaborative correlation filter.
These strategies, as demonstrated in our carefully designed
experiments, clearly improve the tracking robustness.

B. Multiview Visual Tracking

Multi-camera inputs have been used for visual tracking. For
examples, Khan and Shah [32] apply a planar homography
constraint on calibrated cameras for tracking pedestrians on
the ground, and show the power of multiview system with
common overlaps; studies in [33], [34] explore spatial relations
of target object in multi-camera system by analyzing entry/exit
rates across pairs of cameras; [35] exploits dynamical and geo-
metrical constraints among static cameras in a linear model;
[36] models the relationship between viewpoint and 3D aspect
parts of object.
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Overview. Left: an illustrative scene including three cameras/views (view 1, view 2 and view 3), a tracking target A and an obstacle B.

Right: frames from all three views, where occlusion happens in view 3, serve as the input for our tracking algorithm. Three major steps are applied
sequentially: 1.) Shared feature extraction layers are performed on each view to extract cross-scale spatial-aware features (§III-C). 2.) An online updated set
of collaborative correlation filters are shared by all views for tracking inference (§1II-D). 3.) For a view with low tracking confidence (e.g. due to occlusion
in view 3), our framework triggers trajectory prediction network (TPN) to estimate its target location based on trajectories from other views (§III-E).

The most challenging thing in single view tracking is
occlusion. The target trajectory may become discontinuous
when the target is hidden by obstacles. Reference [37] tackles
it on multi-view people tracking problem by using target
association method between calibrated cameras based on the
tracking results of each target on each view. Trajectories also
can be combined with 3D and appearance cues, and form
a hierarchical composition structure for multi-view people
tracking in [38]. The extension [39] improves the performance
by integrating semantic attributes with trajectories for cross-
view people tracking.

Multi-target Multi-camera Tracking (MTMCT) problem is
a special case of multi-view tracking. MTMCT tracks and
identifies pedestrians across cameras. This type of methods
usually combine person detection and re-identification meth-
ods in order to locate pedestrians and build matches between
persons from different moment and cameras. For example,
[8], [40] learn good feature for matching from detected persons
by utilizing CNNSs; the multiview trackers [7], [37], [41], [42]
track a target in each view and match each instance between
cameras that are intuitively capable of occlusion situations due
to diversity of observation directions. The limitations of these
methods are obvious, they need neural-based detectors, such
as Faster R-CNN [43], SSD [44] or pose-based detectors [45],
[46], to detect pedestrians in images. That restricts the category
of target object, and cannot apply on generic objects.

III. GENERIC MULTIVIEW TRACKING FRAMEWORK
A. Problem Formulation

Given a set of synchronized video streams from different
cameras/views, we aim to localize a target (initialized in the
first frames) across time. More specifically, let the system input
be Z; = {If}?;l at time ¢ for n. cameras, and let B; = {b{ €
R“}Z;l be the initial target bounding boxes for all views. Then,
our multiview tracking task is to locate the target by finding
B = {bS e R*Y' , given {7}, T, ...,Z;} and By,! where b¢

c=1’

IThe estimated {5, ..., B;_1} can be used as well.

is the target bounding box with four parameters in view c at
) . ne

time t. We also define a trtajectory set Gr., = {95ttt
where G, = {gf € Rz},z’:,l for each view ¢ and g is
the center of bf in a consecutive time period from time #

to time f7.

B. Framework Overview

The key motivation of our generic multiview tracker (GMT)
is to explore rich cross-view information to improve track-
ing robustness, especially against occlusion and target/camera
view change. We adopt a correlation filter-based tracking
framework as the backbone, and equip it with the novel col-
laborative correlation filter (CCF) and cross-view trajectory
prediction network (TPN) techniques. An overview of the
GMT pipeline is given in Figure 1, which we will briefly
describe as follows.

During online tracking, for newly arrived multiview images
T:, GMT locates the target (i.e., calculates B;) in three major
steps. First, similar to C-COT [2], we apply correlation
filters on multi-scale image patch features to handle objects
under variant scales indicated by k. For each view ¢ and
scale k, a 272 x 272 region of interest (Rol) patch Uy is
cropped and scaled around bf_,. The patch is then fed into
a feature extraction network ¢(-) (§III-C), which is shared
among different views, to generate feature maps, denoted by
X,i, for each view c.

Second, each feature map is convolved with the shared CCF
f for initial target localization, producing confidence map Y.
The maximum response over different scales k is then picked
for the initial tracking results. For sufficiently confident results,
they will be assembled cross view to update CCFE. In other
words, CCF is online updated to enhance its robustness against
view and appearance change.

Third, for a view with low confident initial tracking results
(e.g., view 3 in Figure 1), TPN will be used to estimate its
tracking result by implicitly taking the geometric relations
among different views/cameras into account.
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Algorithm 1 Generic Multiview Tracking

Input : Z,: input images at time ¢;
Gt,,t—1: previous trajectories of all cameras;
f: dynamically updated collaborative filters;
B;_1: tracking results (boxes) in last frame;
Z¢: training samples for each view c;

Output: B;: tracking result for time ¢;
Giot, [, Z2°: updated results;

1 for each camera c do

2 for each scale k do

3 Uy, = CropImagePatch(I, b;_1, k);

4 X}, = FeatureExtraction(Uy);

5 Y)¢ = Correlation operation between X}, and f;
6 end

7 k' = arg max,{max(Y")};

8 Localize object b§ and update g¢ according to Y5;
9 ¢¢ = max(Y)5);

10 if (¢°>7) and (¢ mod 7 =0) then

11 Z2¢=2°UXg;

12 end

13 end

14 if ¢ mod 7 = 0 then

15 Update f by training on all Z.:c=1,...,n;
16 end

17 for each camera c do

18 if ¢° <7 then

19 Update g€ using TPN (§ II-E);
20 Update by accordingly;

21 end

22 end

The overall online tracking framework is summarized in
algorithm 1. Ahead of this procedure, we conduct offline
training for fine-tuning feature extractor (§I11-C) and get TPN
ready (§III-E). More details are described in the following
subsections.

C. Spatial-Aware Feature Extraction Network

Compared with hand-crafted features, features generated
by deep neural networks contain more semantic information,
while less spatial properties are preserved, such as translation
invariant. Conversely, feature maps from shallow layers con-
tain more translation invariant property while losing semantic
properties for discriminative tracking. A recent work [47]
indicates that traditional ResNet backbone has difficulty to
deliver translation invariance features. To address this problem,
it finetunes the network for a better performance. Similarly,
to enhance the translation invariance and correlation filtering
adaptation, we add FFT layers to simulate correlation filtering,
combine them together and train it in an end-to-end way. In
this way, we exploit object’s location to supervise network
training. Specifically, the FFT (IFFT) layer is a differen-
tiable Fast Fourier Transform (Inverse Fast Fourier Transform)
operation.

In order to improve the feature adaptability to correlation
filter-based multiview tracking, we fine tune feature extraction
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Fig. 2. Two-stage training of the feature extractor (offline). The first stage
(green dotted line) is for training the correlation filters while keeping the
feature extraction module fixed; while the second stage (purple dotted line) is
for training the feature extraction module while keeping the correlation filters
fixed. After training, the feature extractor(ResNet-50) plays an important role
in the whole tracking pipeline (illustrated in figure 1).

model based on ResNet-50 that is pretrained on ImageNet.
The offline fine tuning involves two components: the feature
extractor module ¢(-) and the correlation filter module ¢ (-),
as shown in Figure 2.

We construct the training set from existing single view
tracking datasets including VOT2017 [48], OTB100 [49] and
LaSOT [50]. Different frames in a sequence can be regarded
as the multi-view appearances of the same object. Data aug-
mentation is conducted by slightly disturbing object locations
so that let the network has the ability to locate the same object
even it has some translation in image space and improve its
translation invariance.

As described above, The network needs to learn two parts of
parameters during training. One is parameters from the feature
extractor module ¢(-), the other one is correlation filters
from the correlation filter module ¢(-). Instead of optimizing
all parameters at once, we use a two-stage training scheme.
We randomly choose 16 sample pairs from the same sequence
(same object) as a training batch instead of choosing from
random sequences. Specifically, in the first stage of feature
extractor training, we aim to obtain the optimal correlation
filter for current feature extractor so that we can evaluate
whether the feature extractor is good or bad in the second
training stage. So Eq. 1 firstly optimizes the correlation filter
to make the score map close to the ground truth while fixing
the parameters of feature extractor. We also add a regular term
for preventing over fitting. Here, first 10 training pairs are used
to train the correlation filter fir,in by minimizing the following
objective function:

: 2 2
ft?ain = argmin ||Y>'< - Y||2 +7n- ||ftrain||2
flrain

Y = ¢(Weos($ (U, 0¢)), firain) )

where Y'* is target score map; ¢y is the parameters for feature
extractor; 7 is a penalty parameter; and cos(-) is the Hann
window function.
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After the first training stage, we obtain the optimal cor-
relation filters ft’r"ain of the current object. Then, we use the
rest of the sample pairs to optimize the feature extractor ¢ (-).
We fix the correlation filter obtained from the first stage and
use objective function Eq. 2 to conduct evaluation and generate
gradients for back-propagation. Same as in the first stage,
we make the output score map as close as possible to the
ground truth. The output score map Y may have some blurred
noise which is supposed to be zeros when only L2 loss is
used. In other words, high score values may appear on non-
peak area on output response map when using MSE loss. The
value of these noises are relatively low, where the MSE loss
remains in a low level. As a result, we cannot obtain gradients
of sufficient strength from L2 loss. A Sobel term is added to
Eq. 2 to address this issue. The gradient-like term is sensitive
to this kind of noise, and can provide another direction of
gradients to alleviate this phenomenon.

0* = argmin || Y* — Y||% + AV
0

Vs
Y

IV (Y*) = V)3 + [V, (Y*) = V()13
(0(V/cos(¢ (U, 0)), f;rkain) (2)

where V,(-) and V,(-) are horizontal and vertical Sobel
operator respectively. We use Adam [51] optimizer to train our
spatial-aware feature extraction networks. Note that fiin 1S
only used during offline training process. After offline training,
the trained feature extractor plays an important role in the
whole tracking pipeline (illustrated in Figure 1).

D. Collaborative Correlation Filter

View change is a notorious issue that troubles single view
trackers. Fortunately, in the multiview tracking setup, images
captured from different cameras naturally provide cross-view
information for building reliable tracking models. Therefore,
we extend the traditional correlation filter to a collaborative
one. Specifically, during tracking, we update the correlation
filters online with information collaboratively collected from
all sufficiently reliable views.

Denote the training samples dynamically collected from
view ¢ by Z¢ = {X;}T;l with m,. samples. We train a shared
multiview collaborative correlation filter f using all samples
from different sample sets (i.e. {Z°}'< ) by minimizing the
following function:

ne Me

E(f) =D > aSIXSx f =Y IP + 117 3)

c=1 j=I1

where ch denotes the score map of the j-th sample in the
c-th camera, and * is the convolution operation. The weights
aj > 0 represent the importance of the j-th training sample
of camera ¢, which is positively correlated with ¢¢ during
tracking. In this formulation, training samples from all camera
views contribute to filter updating, and thus enhance the
robustness of the learned filters against view change. When
tracking a object, we apply the same correlation filter f to
all camera views. This calculation is very similar to the cor-
relation filter module ¢ (-) when we train the feature extractor
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module ¢ (-). But the difference is, we use the optimizer used
in [3] to minimize this function during tracking.

E. Trajectory Prediction Network

Our key novelty in multiview tracking is the proposed
Trajectory Prediction Network (TPN) for handling tracking
failure using cross-view trajectory prediction. Intuitively, when
the target is occluded (or damaged similarly) in a target view b,
we can usually still reliably track the target in a different view,
say, a source view a. Then, based on the geometric relation
between the two views, we shall be able to locate the occluded
object in view b from the trajectory in view a. The job, despite
being nontrivial due to non-linearity and camera movement,
is done by TPN.

1) Network Design: Denote the object’s position at time
t for view a and view b by g and gf’, respectively. It is
natural for us to find the direct mapping and prediction
between them. This idea does not work in practice due to the
large range of absolute coordinate of object locations. Instead,
we decompose a trajectory as a sequence of between-frame
movements, denoted by r{ = g — g/, as the the motion
vector for camera c¢ at time f. Then, TPN aims to map from
r¢ to r? at time 1.

At time ¢, based on 3D geometrical constrains, the object
position gf in view b can be transformed from its location gf
in a. Let d/ (or d,b) and T} (or Tﬁ’ ) denote respectively the
depth and transformation matrix for view a (or b). We can
have the following derivation

b7 a
2 [gf = T/d (1) [gl}
_ol&h+ 2!
ot 3

j, gfo + Z;:Ilrll?_
1
b =1 b
_ Qz[g?11+ r;‘:|_/1|:g,0 + lei=t1 r; :|(4)

where Q; := T?d*(T%)~!, J is used for normalization, and
is the begin time of a trajectory. Such relation between rf’ and
r{ motivates us to design the following Recurrent Neural Net-
work (RNN)-based TPN model and introduce corresponding
hidden parameters in the model:

I‘? = ®pos(®mn(®enc(r?), p:), hy) (5

In the model, @cpc(-) is an encoder network to trans-
late/convert the input; @y (-, -) indicates stacked RNNs to
simulate the non-linear transformation decided by Q; and
accumulate temporal information (e.g. Zf rf’, g/ and object
movement); p; denotes hidden states of RNN at time ¢ and it
initially encodes camera matrices T; and the initial position
g;,; hp encodes the initial position gﬁ); and ©pos(-) decodes all
features to output the results. TPN can learn these information
in embedding space for each moment from object movements.
It’s noticed that TPN does not take any calibration data as
input. As a result, our method is calibration free and allows
camera movements.

The structure of TPN is shown in Figure 3. The initial
hidden state pﬂ‘o of k-th RNN layer consists of zero vector and

=
ry
*[1
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Fig. 3. Prediction by TPN. The trajectory in the source view a is decomposed
into direction and velocity and arranged in a motion vector. Then the
encoder ®¢pnc maps the motion vector into a 128-dimensional representation,
which then passes through O, containing with 2 stacked RNN layers and
2 learnable hidden states h;|, hy, . Following that, another hidden vector hp is
concatenated with output of RNNs and sent to PoseNet @pos that captures the
between-view geometric constrain. During prediction, only hy,, hr2 and hp
need to be updated. The trajectory in the occluded target view b is corrected
by integrating the predicted motion vector ”Rto .~ Here, we only illustrate a
data flow at a specified time ¢ during pred1ct10n

a learnable hidden parameter vector h,,, ie. , pﬂ‘o = [h,, 0].

These initial hidden states form py, {p}o,ptzo} together,
where the hidden states p, of RNN in general encode temporal
information. Moreover, we use hy,, = [h,, h,,] to represent
all hidden parameters of RNN. PoseNet is a deep fully-
connected network, with ReLLU activation function, whose
input includes both the output of RNN and a hidden parameter
vector hp. Therefore, TPN can be viewed as a decoder that
parses hidden parameters to a mapping function that maps
motion vectors from source view into the target view. Note
that Q; is treated as a dynamic transformation, and thus allows
camera movement.

In practice, estimated trajectories from a source view often
contain noise that may cause unstable trajectory prediction
for the target view. For this reason, we smooth the source
trajectories before sending them to TPN. Specifically, we
use three adjacent object’s locations at adjacent moments
to smooth motion vectors. The smoothed motion vector rf
(we abuse the notation r{ for conciseness) is estimated by

2 c c
1 g i —8_i
gl 32— (©)

12
=32 e - e — gl
j=0 j=0 "S1—=j 1—j—1
In this way, r{ consists of two parts the velocity (left) and the
direction (right). The number is used for taking average.
2) Trajectory Dataset: To train and test TPN, we first
prepare a trajectory dataset by collecting trajectory pairs from
different kinds of camera settings and object motions. In total,
25 scenarios are used for training and 8 for testing. The data
of each scenario is captured by two cameras with different
relative pose constraints. The between-camera relative pose
may change slightly during capturing. An object is placed
in front of the cameras. We move the object or the cameras
randomly in the free space so that trajectory pairs are formed
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in different views without occlusion. We have 30,000 frames
altogether and each sequence has at least 900 frames.

3) Training TPN: As for training, we sample n, (n, = 100)
trajectory pairs from the 25 scenarios per batch. The i-th
trajectory pair (gm 1 Yio, t2) is chosen from 90 continuous
frames, i.e. , t — to = 89 with #p randomly chosen. Using
Eq.6, we get a motion vector set pair (R?O 1,2, Rfo '1,), where
Rig'tr "y, Let W = (hiy,, hi) be the learn-able
hidden parameters of i-th sample pair in networks and @
be other parameters of networks. Our objective is to find an
optimal * that:

0* —arg;anH‘I’(Rtotz,H,hi) Ry 112
i=1

ol @im (P (RE,,, 0, 1), gy = GrL 11> (D)

where n; is the number of training pairs; (-, -, -) denotes
TPN, which takes a set of motion vector R“, network para-
meters 6 and learn-able hidden parameters h as inputs, and
outputs R? for the target view. @iy (-, ) integrates motion
vectors into 2D absolute positions according to given initial
point. We can recover a predicted trajectory by

®1nt(Rt0 tr> gfo) {gt lg; = gto + Z T }t =19 ®
t=tp+1

Since h' is also unknown in the beginning of each batch,
we divide the training process into two stages:

Stage 1: We randomly initialize h’ and conduct network
training which only optimizes h’ and fixes current # for each
training batch:

hi'= arg min ||‘I—‘(R
hl

0,h) —REL 2+ 202 (9)

10,11

where (R,O ,I,R,O tl) is first 40 frames of (R,O 1> ,0 t2)
which means t; — tp = 39. The number of frame at
the first training stage of TPN is to simulate the amount
of historical data used in real scenarios. If the number is
low, TPN cannot learn enough information from previous
trajectory. When more historical data is used, there is a greater
chance that noise will be introduced. Attacking this problem,
we select first 40 frames for the first training stage in our
experiments.

Stage 2: We use hi" as initial parameters, and train networks
parameter € by using training samples in a batch.

0%, H** = argmlnz 1P (RS, 0,0 — R |

0, hi* o

! i=1

+zz||®im(lP(RZ)32, b, g
G2 + 2 2

where H** = (h"**}!”, h™** is optimized parameter for h'*.

We use the Rprop algorithm [52] to optimize the network
parameters. After 20 epochs of training on the trajectory
dataset, we obtain #* and finish training TPN.
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4) TPN in Generic Multiview Tracking: During generic
multiview tracking, the situation may be complicated. There
may be more than one unreliable and reliable views. At time 7,
for each unreliable view b (i.e. ¢* < 7), we use TPN to
estimate its trajectory. We also take the result of correlation
filter, gf, into account. The corrected object’s location gf/ for
camera b is given by:

1— q%

/ b
g’ =q2gl +

Z q°01p(G;, ;5 gzbo,rl)

,q°=1

(10)
w

where w = > . ... ¢° is a normalized coefficient and
®Otp(-, ) is a trajectory prediction function, which is TPN
embedded and predicts the object location gf in camera b.

The behavior of Otp(-,-) is defined in the following. For
the input (gg,,,gf’o,,l), gfo,,l and g,”o,,l are used to train hidden
parameters h* according to Eq. 9; After that, we can obtain
GP . = Om(¥(R; ,.0,h*),gl). Finally, we take g as the
output result of @tp(:, ). 71 is the last time when view b
is reliable. We choose 40 frames to train h*, which means
to = t1 —39. This equation builds connections among multiple
cameras and guides the trajectory correction when occlusion
occurs. We apply TPN on a pair views. Combined with
Algorithm 1 (lines 17 to 22), our method is independent from
the total number of the cameras.

In reality, there can be no reliable views. In that case, our
algorithm simply keep the last momentum of the target object
in each view. Let r; be the motion vector at the last reliable
time 71 in view c. gf =g/ | +717,.

IV. EXPERIMENTS

To evaluate methods in this task, we build a multiview
tracking dataset and compare our tracker with others on it.
Afterwards, we analyze the performance of our Trajectory
Prediction Network. The experiment shows that the proposed
networks can find out the relationship between two trajectories
effectively and improve tracking performance.

A. Multiview Tracking Datasets

There exist some multiview tracking datasets. For example,
the PETS2009 dataset [53], which contains sequences taking
from eight cameras, is such a dataset. PETS2009, however,
by itself is insufficient for convincing experimental evaluation
with its low frame rate and resolution. The target objects in
most of the existing dataset are either pedestrians or vehicles
and other specific type of objects. Our method can track any
generic object. We need some other types of objects to evaluate
trackers. For this purpose, we capture and manually annotate
the Generic Multiview Tracking Dataset (GMTD) to facilitate
relevant research and evaluation.

GMTD contains a total of 17,571 frames and consists
of 10 multiview sequences with each of them captured by
two or three synchronized uncalibrated cameras, under 1080p
resolution and 30fps. tSpecifically, scenel, scene4, scenel,
scene6, scene?7, scene8 and scenel() have two camera views,
the others have three camera views. During data capturing,
cameras are either tripod mounted or hand held. In particular,
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for hand-held cameras scenario, cameras may undergo small
translation and rotation. Cameras are placed with different rel-
ative angles, for example, facing opposite or same directions,
to form diverse trajectories in each view.

GMTD takes into account the diversity of scenarios
and targets. Several different targets, including rigid ones
(e.g. cans, lantern and basketball) and deformable ones
(e.g. leaves, human and cat), were captured in the indoor,
outdoor, artificial or natural scenes. During the acquisition
process, a target may move under multiple camera views with
more than 75% overlap. These 10 sequences mainly cover
six aspects of challenges in visual tracking, including scale
variation, motion blur, deformation, background clusters, fast
motion and occlusion.

The selected target is manually annotated in each sequence
by axis-aligned rectangle bounding boxes. The annota-
tion guarantees that a target occupies more than 60%
area of the bounding box. For further analysis, we also
label target state in each frame as fully-visible, partially-
occluded (33.73% per sequence on average) or fully-occluded
(4.78% per sequence on average). Object is occluded by
20% to 80% in partially-occluded scenario. Others are fully-
visible (if below 20%) or fully-occluded (if beyond 80%).
Bounding boxes are predicted by human when the object is
occluded.

B. Evaluation Methodology

We evaluate our method in two ways, with (see [54]) and
without re-initialization respectively.

1) With Re-Initialization: Based on widely-used tracking
performance measurements, we choose two easily inter-
pretable measurements to evaluate methods, which are accu-
racy and robustness. When evaluating with re-initialization,
‘Accuracy’ refers to the area, in percentage, of the results over-
laps with the ground truth and ‘Robustness’ is a probability
of tracker failing after S frames (see [55]).

Traditional trackers only track object in a single view,
so we test them individually on each camera view of each
scene. Then we can obtain average accuracy p¢ and average
robustness ¢ ¢ for camera view ¢ in a scene. We measure the
performance of a tracker in this scene by averaging them.
So we can get p = % > pfandg = % > o¢. Although our
method tracks all video sequences in a scene simultaneously,
we can also calculate p and ¢ for our tracker.

For more details, the target bounding boxes in all views
will be reset to the next nearest fully-visible frame once IoU
(Intersection over Union) drops to zero (the tracking result has
no overlapping with ground truth bounding box) in any view
during re-initialization. The tracker will be initialized by using
ground truth bounding boxes and frame images at the same
time. Let al.ct denote the IoU in view ¢ at time ¢ in scene i,

Vi = {tl‘v’c,jaft > 0} the valid set. The per-scene accuracy
pi for scene i is defined as p; = WZteV; vas,.
c 1 )

We run a tracker 5 times for each scene to obtain average
accuracy p;. Thus, the overall average accuracy p is obtained
. —_ 1 _

by the weighted average as p = SV > Vil pi
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Fig. 4. Evaluation for cases with re-initialization (left) and without re-initialization (right) on GMTD. Hollow shapes in different colors represent results of

different trackers, and solid ones for GMT. A tracker is better if it resides close to the top-right corner.

TABLE I
EVALUATION RESULTS ON GMTD WITH RE-INITIALIZATION

sequence OECO PECO OSM pPSM OSM_LD PSM_LD  OSiamRPN++  PSiamRPN++ OGMT  PGMT
scenel 0562 0595 0.744 0572 0.750 0.559 1.000 0.671 0.174 0537
scene2 0.456 0.671 0.000 0488  0.012 0.500 0.150 0615 0.156  0.620
scene3 0.006 0940 0.8 0811 0272 0.773 0.038 0.810 0.901  0.841
scencd 0428 0536 0.464 0637 0421 0.642 0.458 0.710 0418 0551
scenes 0796 0.743 0.794 0523 0998 0.554 0.570 0.691 1.000  0.661
sceneb 0216 0690 0228 0699 0376 0.651 0.268 0.733 0.868  0.630
scene7 0.074 0.698 0.080 0592  0.000 0.607 0.076 0.683 0474 0.696
scene8 1.000 0633 0038 0678  0.028 0.732 0.006 0.786 1.000  0.594
scene9 0016 0769 0.042 0.736 __ 0.040 0.728 0.016 0.767 1.000  0.731
scenel0 0.150 0.797 0366 0520 0392 0.597 0.386 0.777 1.000  0.765
Weighted mean  0.299 _ 0.754 0.265 0.660  0.312 0.660 0.242 0.741 0.748  0.698

We will have ny valid tracking fragments in a scene
due to re-initialization. A tracking fragment is counted from
the initial/re-initialized frame to the frame where tracking
failed (IoU drops to zero in any view). The robustness is
characterized as the probability of tracker failing after S frames
(in this evaluation § = 100). Let u; denote the length of i-th
tracking fragment in this view and / represent the total length
of this scene. Then the robustness is defined as:

Z?‘:’o max(u; — S, 0) 1"
= - - (11

The robustness will be higher if tracker can keep tracking
more time. The overall average robustness is the weighted
average of per-scene robustness by the length of scene.

We visualize results in accuracy-robustness(AR) plots.
In AR plots, each tracker is represented as a point in terms
of its overall averaged accuracy and robustness on GMTD
dataset. Comparatively speaking, The tracker performs better
if it is located in the top-right part of the plot and worse if it
occupies the bottom-left part.

2) Without Re-Initialization: To simulate a more realistic
tracking environment, we also test relevant trackers without
re-initialization. Under these circumstances, the accuracy is
defined as the same as re-initialization case. We denote
0 = Vil a5 the success rate of scene i , where /; counts the
total number of frames of the view in scene i. Similarly, tracker
is visualized in a plot with respect to average accuracy and
average success rate of each scene.

C. Results on the GMTD Dataset

We compare our method with ECO tracker [3], which is
a typical example of correlation based tracker. Further more,
we also compare our method with the latest siamese network-
based trackers, such as SiamMask [56] and SiamRPN++ [47],
on GMTD dataset and CAMPUS [38] dataset. Quantitative
results can be seen in Figure 4 and Tables I, II and III. In our
experiments, our tracker parameters are fixed and set r = 0.5.

1) With Re-Initialization: The overall averaged accuracy of
GMT is 0.6984 and the overall average robustness is 0.7477.
On ECO tracker, the overall averaged accuracy is 0.7541 and
the overall average robustness is 0.2985. We can see a huge
improvement on robustness in most scenes. Results can be
seen in Figure 4(a) and Table I. Few scenes get a worse
robustness, because correlation filter tracker has already lost in
the beginning. Wrong tracking trajectory history in a view will
lead up to the wrong prediction of TPN. Similar phenomena
can also be observed in the following experiments.

2) Without Re-Initialization: In practice, tracking algo-
rithms in the real world cannot conduct re-initialization
scheme due to the absence of ground truth. We cannot track
again once the algorithm loses track of target object. Thus,
we also conduct evaluation without re-initialization to evaluate
the long-term performance of algorithms, which is closer to
the real situation. The results are shown in Figure 4(b) and
Table II. Our method can achieve the highest success rates in
most of the scenes except in scenel. That is because GMT
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TABLE 11
EVALUATION RESULTS ON GMTD WITHOUT RE-INITIALIZATION

sequence 0pco peco O0sm  pPsSM  OSM_LD PSM_LD 0SiamRPN++ PSiamRPN++ OGMT  PGMT
scenel 0.610 0.636 0.767 0.607 0.762 0.578 1.000 0.671 0.127 0.328
scene2 0.556 0.792 0247 0.514 0.424 0.579 0.289 0.708 0.894 0.804
scene3 0.199 0.615 0.642 0.785 0.217 0.771 0.144 0.740 0.982 0.813
scened 0.754 0.552 0911 0.688 0.457 0.672 0.731 0.769 0.786 0.657
scenes 0950 0.599 0.893 0.523 0.946 0.577 0.824 0.681 1.000 0.703
sceneb 0.611 0.579 0.570 0.694 0.544 0.675 0.563 0.678 1.000 0.618
scene’/ 0304 0.649 0.399 0.553 0.392 0.588 0.387 0.703 0.981 0.684
scene8 1.000 0.633 0.744 0.670 0.709 0.727 0.838 0.776 1.000 0.614
scene9 0488  0.728 0.585 0.693 0.578 0.692 0.292 0.693 0.998 0.724
scenel0 0406 0.435 0.387 0.623 0.607 0.658 0.579 0.771 1.000 0.765
Weighted mean  0.513 0.624 0.611 0.661 0.506 0.673 0.481 0.721 0.900 0.697

GMT

SiamMask

SiamRPN++ |

Fig. 5.

B >
By

—
| SO

Demonstrations of trackers’ results on ‘scene2’ of GMTD without Re-initialization. Ground truth bounding boxes are drawn in green. Tracker’s

results are drawn in orange. Each row shows results of close moments for each tracker.

failed initially, which will mislead TPN to output the wrong
prediction. Our method also gets a competitive accuracy in
most cases.

Figure 5, 6 and 7 illustrates some visualized results on video
clips of GMTD. Here we compare our tracker with state-of-
the-art ones. In these figures, we only show one camera view of
a scene. Occlusions in these clips make the majority of trackers
fail to track the target object. Our tracker (GMT) can still
keep tracking with the help of TPN when serious occlusion
occurs.

D. Results on the CAMPUS Dataset

We also test tracking algorithms on CAMPUS dataset. This
dataset is designed for multi-view object tracking algorithms

to test on dense foreground, complex scenarios, various
object scales. It has around 15-25 pedestrians, frequent con-
junctions and occlusions. Pedestrians in this dataset con-
duct diverse activities in front of dynamic background, and
have interactions between objects and background. There are
4 sequences in this dataset: Garden 1, Garden 2, Audito-
rium and Parking Lot. Each sequence contains 3-4 cameras
at 30fps 1080p configuration and have a duration about
3-4 minutes. Each camera covers both overlapping regions
and non-overlapping regions with other cameras. In addition
to two cameras (view-HC3 and view-HC4) of Auditorium
sequence, which have not enough overlapping regions, we use
all cameras in each sequence for testing.

We evaluate relevant trackers without re-initialization.
The result is shown in Table III. We can see a higher
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ECO

GMT

SiamMask

=

Fig. 6. Demonstrations of trackers’ results on ‘scene7’ of GMTD without Re-initialization. Ground truth bounding boxes are drawn in green. Tracker’s
results are drawn in orange. Each row shows results of close moments for each tracker.

SiamRPN++

GMT

SiamMask

SiamRPN-++ }

Fig. 7. Demonstrations of trackers’ results on ‘scene9’ of GMTD without Re-initialization. Ground truth bounding boxes are drawn in green. Tracker’s
results are drawn in orange. Each row shows results of close moments for each tracker.

success rate in most cases. As mentioned above, TPN target bounding box and tracking failures in the initial
needs trajectory histories to predict current position. Some stage, will cause prediction errors, especially in Auditorium
failure initialization, such as partial occlusion in initial sequence.
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TABLE IIT
EVALUATION RESULTS ON CAMPUS [38]. ACCURACY AND SUCCESS RATE OF TRACKERS ON EACH SEQUENCE

sequence  dgco pPECO OsM  pPsM  OSM_LD PSM_LD OSiamRPN++ PSiamRPN++ OGMT PGMT
Auditorium  0.685  0.530 0.638 0.533 0.637 0.560 0.606 0.529 0.676 0.572
Gardenl 0.824 0.713 0.874 0.659 0.827 0.661 0.898 0.712 0.909 0.745
Garden2 0.819 0.701 0.737 0.652 0.748 0.647 0.776 0.693 0.875 0.715
Parkinglot 0.708 0.621  0.709 0.590 0.683 0.594 0.738 0.634 0.703 0.616
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E. Trajectory Prediction Evaluation

We evaluate our proposed TPN on trajectories’ test dataset
and compare TPN with naive methods. Moreover, we also test
variants of TPN to show that the current structure (TPN-S) is
comparatively optimal.

We provide two naive methods for trajectory prediction. One
copies speeds of reference view and integrates them into the
trajectory of current view (Naive-C). The other one simply
repeats the last average speed of current view’s trajectory
(Naive-S). Variants of TPN contain the standard TPN (TPN-S)
described in section III-E. Another variant’s hidden parameters
are removed and all network parameters are trained online
during tracking (TPN-O).

We simulate trajectory predictions on test dataset in online
tracking between two views, a and b, to evaluate these
methods. During each simulation, we sample a trajectory
pair (gg)jtz, g;g’,z) of two views from time 7y to time f
(ta — to = 89). The trajectory pair is divided into two parts.
The first part is (g;;,,l, g,lfm), where t; — tp = 39. We train
these models by using this pair. Then we use the left trajectory
of reference view a and trained model to predict the
iy After that,
1411, to calculate the pixel distances of

each frame between gtl IS and gtl e In order to prevent
potential variance of performance in evaluation, we repeat the
simulation 1000 times and obtain the statistic average error of
pixels for predicted position in each frame.

Results are shown in Figure 8. This evaluation shows that
our proposed TPN-S has the best performance in predicting
trajectory from the reference view. Respectively, TPN-O,
whose hidden layers are removed, suffers from over-fitting
problem. Moreover, TPN-O updates all parameters online,
which leads to more computational costs. There still are
some failure cases for all methods, such as (d) in Figure 8.
It failed because g};j f lacks sufficient information to infer the
relationship between cameras.

a
f+l,n
trajectory of the other view b, denoted G%*

we use ground truth G

V. CONCLUSION

In this paper we propose a novel generic multiview tracker
(GMT) for visual object tracking with multi-camera inputs.
Unlike most previous multiview tracking systems, our GMT
requests little prior knowledge about the tracking target object,
allows camera movement, and is calibration free. Our GMT
has two novel components, a cross-view trajectory prediction
network and collaborative correlation filter, which are effec-
tively integrated with a correlation filter tracking framework.
For evaluation, we contribute a generic multiview tracking
dataset to alleviate the lack of proper multiview tracking
benchmarks. In our carefully designed experiments, except for
initial tracking failure in some scenarios, which is the limita-
tion, the proposed tracking algorithm demonstrates advantages
over state-of-the-art tracking algorithms.
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