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Abstract

Medical imaging has significantly advanced computer-001
aided diagnosis, yet its re-identification (ReID) risks raise002
critical privacy concerns, calling for de-identification003
(DeID) techniques. Unfortunately, existing DeID meth-004
ods neither particularly preserve medical semantics, nor005
are flexibly adjustable towards different privacy levels. To006
address these issues, we propose a divide-and-conquer007
framework comprising two steps: (1) Identity-Blocking,008
which blocks varying proportions of identity-related re-009
gions, to achieve different privacy levels; and (2)010
Medical-Semantics-Compensation, which leverages pre-011
trained Medical Foundation Models (MFMs) to extract012
medical semantic features to compensate the blocked re-013
gions. Moreover, recognizing that features from MFMs014
may still contain residual identity information, we introduce015
a Minimum Description Length principle-based feature de-016
coupling strategy, to effectively decouple and discard such017
identity components. Extensive evaluations against exist-018
ing approaches across seven datasets and three downstream019
tasks, demonstrates our state-of-the-art performance.020

1. Introduction021

In the era of digital medicine, large-scale medical images,022
such as X-rays and fundus photographs [6], are routinely023
processed by AI-based diagnostic models [29, 84, 94, 107,024
109] to aid clinical decision-making. However, the increas-025
ing availability of these images raises significant concerns026
regarding patient privacy [18, 56, 78, 86].027

Although explicit personal details such as patient name028
can be easily removed from medical image headers [1, 70,029
82] or burned-in texts [90, 111], re-identification (ReID)030
remains feasible for the intrinsic bio-identifiers, such as031
anatomical markers visible in chest X-rays [36, 73]. This032
enables sensitive information breaches [9, 51, 87], compro-033
mising patient privacy (see Figure 1(a)).034

Several studies have attempted to defend against ReID035
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Figure 1. (a) Given the query medical image, the ReID model can
retrieve sensitive patient information from a leaked database. (b)
Our DeID framework, removing identity and then compensating
medical semantics, ensures adjustable identity protection, while
preserving downstream task utility. Besides, a Minimum Descrip-
tion Length (MDL) principle-based code space is introduced, to
decouple and discard the identity information in medical features.

attacks. For instance, some approaches [12, 31, 33, 45] fo- 036
cus on removing facial features to obfuscate identity. How- 037
ever, such methods cannot be applied to other body parts 038
like the chest, where identity information is deeply inter- 039
woven with diagnostic semantics. Standard image filter- 040
ing techniques, such as blurring [91], pixelation [42], and 041
masking [96], indiscriminately degrade critical diagnostic 042
details, thereby impairing downstream medical task perfor- 043
mance. Moreover, under high privacy settings, the severe 044
degradation of image quality further deteriorates task per- 045
formance. Differential privacy methods [20, 28, 57, 100] 046
mitigate identity information via noise injection, but this 047
operation also perturbs diagnostic features. Identity adver- 048
sarial learning methods [54, 74] train generators by jointly 049
maximizing identity discrepancy between the generated and 050
original images, while minimizing distortion of medical in- 051
formation. Nevertheless, given the inherent entanglement 052
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between identity and diagnostic features, these methods fail053
to preserve diagnostic semantics at high privacy levels ade-054
quately. Recently, diagnostic annotation-conditioned gener-055
ative models [16, 27, 44, 88, 97] have yielded promising re-056
sults, yet they remain limited to task-specific semantics and057
cannot offer adjustable privacy levels. In summary, no ex-058
isting method preserves task-generalizable semantics, while059
supporting a wide range of adjustable privacy levels.060

To address these issues, we introduce a novel divide-and-061
conquer framework DCM-DeID, which decouples identity062
removal from semantic preservation, to achieve semantic-063
rich yet adjustable de-identification. Our approach includes064
three steps, i.e., ID-Blocking, which masks identity-related065
regions to achieve adjustable privacy levels; Medical Se-066
mantics Extraction, which leverages pre-trained medical067
foundation models (MFMs) [71, 105] to extract semantic-068
rich medical features; Image Re-Synthesis, which employs a069
diffusion model [43, 83] to synthesize de-identified images,070
given the above ID-masked image and the medical fea-071
tures. Moreover, considering that the features from MFMs072
may also contain some identity information, we introduce a073
novel minimum description length [34]-based feature de-074
coupling strategy, which excludes identity-associated in-075
formation from the vanilla MFM features in a minimum-076
codelength latent space. This effectively prevents the rein-077
troduction of identity information during the image re-078
synthesis step. Our contributions are:079

• We reveal that existing medical DeID methods fall080
short in preserving task-generalizable semantics, and081
do not adjust seamlessly across privacy levels. We082
build the first benchmark for this problem, by repro-083
ducing previous approaches fairly on seven datasets.084

• We propose the DCM-DeID framework, which per-085
forms identity removal and medical semantics preser-086
vation in separate steps, enabling both adjustable pri-087
vacy protection and medical task utility.088

• We introduce a Minimum Description Length-based089
decoupling strategy, which decouples identity cues090
from medical features in a compact code space, further091
improving the privacy protection capability.092

• Our framework demonstrates state-of-the-art perfor-093
mance. Extensive Analysis is performed to verify its094
inner designs.095

2. Related Works096

Image Privacy Protection. Early methods applied low-097
level filters to obscure image details, including downsam-098
pling [21], blurring [91], and pixelation [42]. Later, encryp-099
tion in alternate domains such as JPEG bitstreams [79, 89]100
and DCT coefficients [102, 103] was explored, though these101
often introduced severe distortions that hindered down-102
stream tasks. Homomorphic encryption [98, 112] addresses103
inference on encrypted images, but suffers from high com-104

putational cost [75] and limited compatibility with ad- 105
vanced models like Vision Transformers [25]. Addition- 106
ally, approaches for face images [12, 35, 66] leverage fa- 107
cial priors from StyleGAN [52] or face recognition net- 108
works [23, 106], which may not readily generalize to other 109
domains, such as the medical-domain images in our work. 110

Medical Image De-Identification. Early methods (e.g., 111
FreeSurfer [31], PyDeface [33], SynthStrip [45]) focus 112
on removing facial features in brain MRI. For common 113
medical images, early approaches use pixel-domain fil- 114
ters (like blurring [91] and pixelation [42]) or frequency- 115
domain techniques [32], but these hand-crafted solutions 116
also severely degrade the image details, leading to substan- 117
tially degraded results. Differential Privacy methods [20, 118
28, 57, 100] inject noise into the training data, which com- 119
promises inference-time utility. More recent generative 120
models [16, 27, 44, 88, 97] synthesize images conditioned 121
on disease labels or lesion masks. However, they tend to 122
lack task generalizability and struggle to balance privacy- 123
utility trade-offs, which are addressed by our approach. 124

Feature Decoupling. Early variational auto-encoder 125
(VAE)-based works [14, 41, 55, 85] decouple representa- 126
tions, by constraining the variables in latent space indepen- 127
dent. Generative adversarial network (GAN)-based meth- 128
ods [15, 59] are unsupervised, leaving factors unaligned 129
with explicit semantic or identity information. For face 130
images, there are methods [24, 49, 52, 53, 62] targeting 131
identity separation. However, these methods rely on strong 132
facial priors that may not generalize to medical images. 133
In contrast, our approach effectively decouples identity in 134
medical images, within a minimum-codelength space. 135

3. Methodology 136

In this section, we first describe the medical re- 137
identification (ReID) models used for privacy attacks. Next, 138
we introduce our de-identification model, which divides the 139
task into two stages. First, identity information is removed 140
via region blocking with an adjustable threshold. Second, 141
lost medical semantics are compensated. This approach 142
flexibly adjusts privacy while preserving rich, generalizable 143
medical features for downstream tasks. 144

3.1. Medical ReID Models 145

Given a query medical image, ReID models aim to retrieve 146
all images belonging to the same individual, from a medical 147
record database. Concretely, the model first extracts identity 148
(ID) embedding from the query image, and then compare 149
it with that of each image within the database. Then, the 150
image with the closest Euclidean distance is adopted as the 151
re-identified image. 152

We build two medical ReID models, i.e., ViT [25] 153
and VisionMamba [110]-based ones, which are separately 154
adopted in the training and the evaluation stages. These 155
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Figure 2. Overview of the proposed divide-and-conquer framework, DCM-DeID. (a) ID-Blocking: A pre-trained ReID network produces
the identity-similarity map, which is binarized by different thresholds to adjust privacy level. (b) ID-Free Medical Semantics Extraction:
Medical foundation models (MFMs) extract features that are encoded into a code space under the minimum-codelength regularization.
A learned mask partitions the codes into identity- and medical semantics-related ones, where only the latter one is preserved. (c) Image
Re-Synthesis: A diffusion model re-synthesizes images that are privacy-preserving and semantics-rich, generalizing to various downstream
tasks. We illustrate with X-ray images, but the framework is also applicable to other modalities such as fundus images. denotes frozen
models, while gray dashed lines indicate components used solely for learning identity-semantic decoupling. The channel number of codes
Q is arbitrary; two channels are shown for conciseness. ⊗ denotes the element-wise multiplication.

ReID models are optimized with a combination of classi-156
fication loss and triplet loss [40], following the previous ob-157
ject ReID work [39].158

3.2. A Divide-and-Conquer Approach159

To defend against attacks on medical ReID models, we pro-160
pose DCM-DeID, a divide-and-conquer approach for med-161
ical image de-identification. DCM-DeID operates in three162
stages: ID Blocking, which removes identity-related image163
regions; ID-Free Medical Semantics Extraction, which ex-164
tracts rich medical information without reintroducing iden-165
tity information; and Image Re-Synthesis, which generates166
the final de-identified medical image.167

ID-Blocking. Given an input image X ∈ R3×H×W ,168
where H and W denote the image spatial scales, we use169
a ViT-based ReID model to extract local features f ∈170
R768×h×w, where h = H/16 and w = W/16. Spatial aver-171
age pooling is applied to f to obtain an identity embedding172
id ∈ R768. For each spatial position in f , the cosine simi-173
larity with id is computed, resulting in a similarity map S ∈174
Rh×w. To generate the ID-blocked image, the similarity175
map S is binarized by a threshold T . Then, the ID-blocked176
image is computed as: XnoID = X ⊙Upsample(S > T ),177

where Upsample denotes nearest-neighbor interpolation to 178
match the resolution of S to X . 179

ID-Free Medical Semantics Extraction. Although 180
XnoID effectively removes identity information, it in- 181
evitably distorts medical cues such as lung shadows. To 182
amend this, we employ pre-trained medical foundation 183
models (MFMs), e.g., MGCA [93] for X-ray images, to ex- 184
tract rich medical feature fMFM from X . Since fMFM 185
contains both semantic cues and local details that may en- 186
code identity, we introduce a feature decoupling strategy 187
(Section 3.3) to decouple and remove the identity informa- 188
tion, yielding the identity-free semantic feature f̂sem. 189

Image Re-Synthesis. Given XnoID and f̂sem, a dual- 190
conditioned diffusion model synthesizes the de-identified 191
image that inherits the rich semantics within MFMs, while 192
also protecting privacy. Since the synthesized image is 193
highly realistic, it can be directly deployed to downstream 194
medical AI applications, without further adaptation. The 195
model details are elaborated in Section 3.4. 196

3.3. Medical Semantics Decoupling 197

Medical features extracted by the MFM encode both di- 198
agnostic semantics (e.g., lesion morphology) and identity- 199
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related cues (e.g., rib patterns in chest X-rays). For effec-200
tive privacy-preserving, it is imperative to decouple these201
two types of information, and discard the identity cues. We202
achieve this by learning a minimum-length code space, and203
separating the two parts in this space.204

Theoretical Motivation. From an information-theoretic205
perspective, the Minimum Description Length (MDL) prin-206
ciple [4, 34] states that the best representation for a given207
set of data is the one that minimizes the total codelength208
needed to describe the data, where each group of features209
tends to capture the independent or low-correlation infor-210
mation parts. In our context, let Q be the latent represen-211
tation of the MFM feature fMFM and let H(Q) denote its212
expected codelength. The MDL principle objective can be213
seen as balancing a reconstruction loss and a compression214
term, i.e., the so-called rate-distortion loss (RD loss) [5]:215

Lcode-all = min
E,D

∥fMFM − f̂MFM∥2︸ ︷︷ ︸
Feature Reconstruction

+ βH(Q)︸ ︷︷ ︸
Codelength

, (1)216

where Q = E(fMFM ), f̂MFM = D(Q), and β denotes217
balancing weight. E and D represent a pair of feature en-218
coder and decoder networks.219

Discrete Code-based Codelength Estimation. Directly220
calculating the H(Q) for the continuous variable Q is non-221
trivial [65]. Fortunately, the neural data compression com-222
munity [2, 3, 67, 69] have verified that the codelength of in-223
teger latent variables can be quite precisely estimated with224
a learnable entropy model. Therefore, we append the quan-225
tization operation at the tail of the encoder E , to make ele-226
ments within Q discrete values, and estimate its codelength.227

Concretely, E comprises three residual blocks [37] with228
256 channels, followed by a convolutional layer to reduce229
dimensionality and a rounding operation that outputs a 32-230
channel integer code Q. The decoder network D is sym-231
metric to E , except it omits the rounding operation. During232
training, the straight-through estimator [68] is employed to233
backpropagate gradients through the rounding step.234

Following [2], the expected codelength of encoding Q is235
calculated as the log-likelihood, i.e., H(Q) = − log2 p(Q),236
where the probability p(Q) is modeled using a Gaussian237
Mixture Model (GMM) [81] with K components:238

p(Q) =

K∑
k=1

wk · N
(
Q;µk, eσ

k
)
, (2)239

where {w,µ,σ} are the learnable mixture weights, means,240
and log variance scalers of the GMM components, respec-241
tively, which are shared across spatial positions, not un-242
shared along the channel axis [2]. Following [17], K is set243
to three. For each integer element q ∈ Q, the probability is244
computed over the quantization bin [19, 69]:245

p(q) = F(q + 0.5)−F(q − 0.5), (3)246

where F(x) =
∑K

k=1 w
k Φ

(
x;µk, eσ

k
)

is the cumulative247

distribution function (CDF) of the Gaussian Mixture Model248

(GMM), Φ
(
x;µ, eσ

)
= 1

2

[
1 + erf

(
x−µ√
2 eσ

)]
. We not that 249

the CDF can be efficiently calculated by the modern deep 250
learning framework such as PyTorch [77]. 251

Learning of Identity-Associated Code Mask. A sin- 252
gle convolution layer predicts a binary mask M from Q, 253
with the same dimensions as Q. The Gumbel-Softmax 254
algorithm [48] is applied to enable gradient propagation 255
through the binary mask. The identity-associated codes are 256
then obtained by element-wise masking, Qid = Q ⊙ M. 257
A lightweight convolutional network, composed of three 258
residual blocks followed by average pooling, predicts the 259
identity embedding îd from Qid. Then, the RD loss for re- 260
constructing identity can be given by: 261

Lcode-id = ∥îd− id∥2 + βH(Qid), (4) 262

where H(Q̃id) is calculated similarly to H(Q), sharing the 263
same GMM parameters and balancing weight β as in Equa- 264
tion 1, since they operate in the same latent space. 265

Reconstruction of Medical Semantics. By suppressing 266
identity-related codes via the inverse mask (1−M), we ob- 267
tain the semantics-part codes Qsem = (1−M)⊗Q. Finally, 268
the final ID-free medical semantic feature is reconstructed 269
as: f̂sem = D(Qsem), which preserves critical diagnostic 270
semantics, excluding the identity information. 271

3.4. Image Re-Synthesis Model 272

Given the ID-masked image XnoID and the ID-free med- 273
ical semantic feature f̂sem, we employ a diffusion model 274
to synthesize de-identified medical images. First, we uti- 275
lize a Down-Net to project the high-resolution XnoID into 276
the low-resolution feature fnoID ∈ R512× H

32×
W
32 . The 277

Down-Net consists of the VAE encoder from Stable Dif- 278
fusion [83], followed by two convolution layers of kernel 279
size 5 and stride size 2. Next, we adopt a bi-directional 280
cross-attention mechanism [13] to fuse fnoID and f̂sem, 281
producing a fused feature ffuse ∈ R512× H

32×
W
32 , which is 282

further processed through a series of convolutional layers. 283
This produces a set of features with dimensions matching 284
those of the UNet’s intermediate feature maps within the 285
diffusion model. These features are added to the UNet lay- 286
ers, guiding the diffusion process toward two objectives: 287
maintaining the privacy level of XnoID, while preserving 288
the medical semantics in f̂sem. 289

3.5. Learning Strategy 290

The whole framework is end-to-end optimized, with the fol- 291
lowing objective, 292

Ltotal = Lcode-all + Lcode-id + Ldiffuse, (5) 293

where Ldiffuse denotes the diffusion loss [43]. We do not 294
introduce the balancing weight, since we found directly 295
adding the loss terms already achieves satisfactory results. 296
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Figure 3. Identity-performance trade-off curves of various medical privacy protection methods.

Attack
SR Method

X-ray Classify
AUROC (%)

X-ray Caption
BLEU

X-ray Seg
Dice (%)

Fundus Classify
AUROC (%)

Fundus Seg
Dice (%)

MIMIC-X Chest-XRay CheXpert MIMIC-X ChestX-Det EyePACS ODIR5K Refuge2

10%

Pixel-Blur [91] 64.15 60.48 74.45 0.1259 7.53 44.83 56.17 22.35
Feat-Noise [104] 65.84 66.25 66.49 0.1453 10.74 47.76 55.53 24.85
ID-Adv [74] 59.36 61.75 73.11 0.1131 22.23 56.28 58.50 41.23
Privacy-Net [54] 57.09 59.51 71.47 0.1329 15.75 52.63 57.29 39.23
MAE [38] 59.11 65.26 77.05 0.1186 9.94 50.91 56.50 27.33
Ours 72.86 73.66 86.12 0.1750 27.98 65.23 59.96 54.66

20%

Pixel-Blur [91] 67.23 64.27 80.67 0.1307 11.25 49.56 57.42 34.11
Feat-Noise [104] 68.27 69.01 80.78 0.1595 14.28 51.29 57.17 37.20
ID-Adv [74] 64.08 62.71 77.53 0.1193 22.83 63.24 59.28 49.47
Privacy-Net [54] 62.11 62.63 80.25 0.1434 20.55 61.01 58.25 47.47
MAE [38] 66.43 71.38 83.52 0.1383 13.99 54.97 58.01 40.13
Ours 74.35 75.01 86.32 0.1859 29.49 69.59 60.41 62.04

Original 82.13 84.82 87.24 0.3218 52.89 81.46 61.53 90.08

Table 1. Performance comparison of medical image privacy protection methods, under different attack Success-Rates (SR). For measuring
SR, we adopt CMC-R1 metric for MIMIC-X, Chest-Xray, CheXpert, EyePACS, and ODIR5K, using ID-R metric for ChestX-Det and
Refuge2. Original denotes the performance on original images, which is the performance upper-bound of privacy-removal images.

4. Experiments297

4.1. Implementation Details298

For Med-ReID models, we adopt the AdamW opti-299
mizer [63] during training, with a learning rate of 1e-5300
scheduled by cosine decaying strategy and a weight decay301
of 1e-2. The training process consists of 300,000 steps. The302
batch size is 256. We apply random cropping and blurring303
as image augmentation strategies, and the input image res-304

olution to networks is 256 × 256. The ViT-based models 305
are initialized with CLIP-pretrained weights [80], while the 306
VisionMamba-based models are initialized with ImageNet- 307
pretrained weights [22]. Training a single ReID model takes 308
about 24 hours with four NVIDIA RTX 4090 GPUs. 309

For DCM-DeID model, the UNet within the diffusion 310
model follows the same architecture as the Stable Diffu- 311
sion [83], also performing the diffusion procedure in the 312
latent space. The feature channels within UNet are reduced 313
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to [128, 256, 512, 1024], for the four stages of both the314
down-pathway and up-pathway, to reduce computational315
cost. The identity-similarity map threshold T is defined316
as the r-th quantile of the similarity map S. r is selected317
from [0.95, 0.7, 0.4, 0.2] to cover wide privacy levels. We318
adopt MGCA-ResNet [93] and RetFound-ViT [109] MFMs319
for X-ray and fundus images, respectively. During training,320
we apply random flipping and random cropping 256 × 256321
patches for data augmentation. The codelength loss term322
weight β is set to 0.5. At test time, we resize the shorter323
side of the images to 256 and then center-crop the middle324
256×256 region. The learning rate is set to 1e-4 and is grad-325
ually decayed with the cosine annealing strategy [64]. The326
total number of training steps is 800,000. The mini-batch327
size is 64. We utilize the AdamW optimizer [63] imple-328
mented in PyTorch [77] with CUDA support. The momen-329
tum parameters are set as β1 = 0.9 and β2 = 0.99, and330
the gradient norm is clipped to a maximum value of 1. The331
entire training process takes about three days on a machine332
equipped with eight NVIDIA RTX 4090 GPUs.333

4.2. Datasets334

We evaluate our approach on two medical image modalities:335
chest X-rays and eye fundus photographs, with seven public336
datasets. For the chest X-ray modality, we split the MIMIC-337
X dataset [50] into training, validation, and test sets using338
an 8:1:1 ratio. For the Chest-Xray and CheXpert datasets,339
we randomly select 10% patients as the test set. We also340
adopt the ChestX-Det dataset [60] to evaluate the X-ray seg-341
mentation task. For the eye fundus modality, we divide the342
EyePACS dataset [26] into training, validation, and test sets343
with an 8:1:1 ratio, and we use the Refuge2 dataset [30]344
to evaluate the fundus segmentation task. ODIR5K [8] is345
also adopted for evaluating the fundus classification task346
of systemic diseases such as hypertension. Note that only347
MIMIC-X and EyePACS are used during training; all other348
datasets, which differ in environment, demographics, and349
imaging devices, are never seen during training, to evaluate350
the domain generalizability of our approach.351

4.3. Reproduced Privacy Protection Methods352

We implement several privacy protection methods, compar-353
ing them with our approach in a fair setting.354
Pixel-Blur [91]. This method applies a Gaussian blur to355
the input image. We experiment with standard deviations of356
{1, 5, 10, 20} to vary the level of de-identification.357
Feat-Noise [104]. We train an autoencoder [104] and inject358
Gaussian noise into its latent features. The noise level is359
selected from {0.1, 0.8, 0.85, 0.9, 0.95}.360
ID-Adv [74]. A UNet is trained to generate a de-identified361
image Y from the original image X , optimizing the loss362
L = λ cos(idX , idY ) + ∥medX −medY ∥2 +Lreg, where363
idX and idY are identity features extracted by a ViT-based364

ReID model, and medX and medY are medical features ob- 365
tained from MFMs same as our approach. Lreg is a GAN 366
regularization loss ensuring visual plausibility, cos(·, ·) de- 367
notes cosine similarity, and ∥ · ∥2 the ℓ2 norm. The trade-off 368
weight λ is chosen from {0.1, 0.5, 1, 2}. 369
Privacy-Net [54]. This method updates the identity model 370
and the de-identification network adversarially, enhanc- 371
ing de-identification performance. The original Privacy- 372
Net focuses solely on segmentation tasks, supervised 373
by segmentation masks. To enable task-agnostic de- 374
identification, we train it using the same objective as ID- 375
Adv. Since the identity model is adversarially updated and 376
are stronger, we use smaller λ values compared to ID-Adv, 377
i.e., {0.05, 0.25, 0.5, 1}. 378
MAE [38]. Following [96], we transfer the concept of 379
masked auto-encoders (MAE) [38] to the adjustable privacy 380
protection problem, by masking a random proportion of 381
patches to obscure identity information. It adopts the same 382
diffusion model as our approach to generate the masked re- 383
gions. This model can also serve as a degenerated version of 384
our model, where both semantic compensation and identity- 385
region similarity designs are removed. 386

4.4. Downstream Task Models 387

For the identity recognition, we adopt the VisionMamba- 388
based ReID model, which differs from the ViT-based model 389
employed during the training of privacy protection meth- 390
ods, ensuring the method generalization capability across 391
different ReID models. For the X-ray classification, we use 392
the ViT model pre-trained with Med-UniC [92]. For X-ray 393
captioning, we employ the visual-language model CXR- 394
LLaVA-v2 [58], which is specifically designed for X-ray 395
images. For X-ray segmentation, we adopt CGRSeg [72]. 396
For fundus classification, we use the ViT model pre-trained 397
with KeepFit [99]. Finally, for fundus segmentation, given 398
the limited dataset size, we employ nnUNet [47]. 399

4.5. Evaluation Metrics 400

For privacy evaluation, we adopt the cumulative matching 401
characteristics (CMC) [10] at Rank-1, i.e., CMC-R1, on 402
datasets with patient ID information available (i.e., MIMIC- 403
X, Chest-Xray, CheXpert, EyePacs, and ODIR5K). For 404
datasets without patient ID information (i.e., CheX-det and 405
REFUGE2), we adopt the recognition rate, i.e., ID-R, which 406
determines whether the distance between the ID feature of 407
the original and de-identified image exceeds a predefined 408
threshold. The thresholds are set to 1.1 and 1.35 for the X- 409
ray and fundus modalities, respectively, based on statistics 410
from the validation sets of MIMIC-X and EyePACS. For 411
the disease diagnosis task, we employ the area under the re- 412
ceiver operating characteristic curve (AUROC) metric [11]; 413
for the image captioning task, we use the bilingual eval- 414
uation understudy (BLEU) metric [76]; and for the image 415
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segmentation task, we adopt the Dice score metric [7].416

4.6. Results417

X-ray Classification. As shown in Table 1, our method418
substantially outperforms other approaches, achieving AU-419
ROCs of 72.86%, 73.66%, and 86.12% on MIMIC-X,420
Chest-XRay, and Chexpert, respectively, under CMC-421
R1=10%. Notably, although our model is trained on422
MIMIC-X, it generalizes well to the other two datasets.423

Among the other compared approaches, Feat-Noise ob-424
tains the second-best performance, i.e., AUROC of 65.84%425
at CMC-R1=10% on MIMIX-X, by condensing image pix-426
els into a compact latent feature space. In contrast, methods427
that jointly optimize a trade-off between de-identification428
and medical preservation, i.e., ID-Adv and PrivacyNet,429
yield unsatisfactory performances. As shown in Figure 3430
(a), under the ID-R=5% setting, ID-Adv and PrivacyNet at-431
tain AUROCs of only 56.32% and 54.21% on MIMIC-X,432
respectively, which are much lower than the simple pixel433
blurring baseline (61.62%). This indicates that directly opti-434
mizing the two conflicting objectives is suboptimal. In con-435
trast, our approach decouples the objectives into two sepa-436
rate steps, identity removal and medical semantic compen-437
sation, achieving consistently superior performance.438

As for MAE, which employs the same diffusion model439
as ours, it achieves competitive results at a high attack-440
ing rate, with an AUROC of 76.12% @CMC-R1=40% on441
MIMIC-X, outperforming all other approaches except ours.442
However, at a low attacking rate CMC-R1=10%, it falls be-443
hind our method by over 13% AUROC. This highlights that444
our superior performance is not solely due to the genera-445
tive power of the diffusion model, but rather stems from the446
effectiveness of our core idea of semantic compensation.447

X-ray Caption. As shown in Table 1, our method at-448
tains a BLEU score of 0.1750, remarkably surpassing Pixel-449
Blur (0.1259), Feat-Noise (0.1453), and MAE (0.1186), at450
CMC-R1=10%. This proves that our approach can compre-451
hensively preserve the clinic-required information, beyond452
only the classification label.453

X-ray Segmentation. Furthermore, we evaluate the454
methods on a fine-grained task: segmentation. As shown in455
Table 1, at ID-R1=10%, our method achieves a Dice score456
of 27.98%, outperforming Pixel-Blur (7.53%), Feat-Noise457
(10.74%), Privacy-Net (15.75%), ID-Adv (22.23%), and458
MAE(9.94%). This proves that our semantic compensation459
scheme not only preserves the global semantics for classi-460
fication, but also effectively retains the local semantics for461
segmentation. Pixel-Blur and Feat-Noise perform poorly,462
since they severely corrupts the image details. In con-463
trast, ID-Adv and Privacy-Net, which incorporate a med-464
ical feature-matching loss, achieve slightly decent perfor-465
mance, but still lag far behind our approach. For instance,466
under ID-R=80%, our method outperforms Privacy-Net by467
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Figure 4. (Left) Ablation on the framework design. (Right) Abla-
tion study on the feature decoupling strategy.
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/root/autodl-tmp/patient_triple/universal_identity/nih-chest-
xrays_256px_protected0.7/images/00016313_000.png

Figure 5. Qualitative comparison of different variant models. The
models are described in Figure 4 caption. Red arrow denotes the
modified identity-related features. Best to view by zooming-in.

approximately 8%, as shown in Figure 3(e). 468
Fundus Classification. Beyond X-ray images, our 469

method also proves effective on fundus data. For instance, 470
on EyePACS and ORID5K, our approach outperforms the 471
second-best competitor ID-Adv by about 9% and 1%, re- 472
spectively. These results confirm that our approach gener- 473
alizes well across different imaging modalities. 474

Fundus Segmentation. Our method achieves a Dice 475
score of 54.66% on REFUGE2 at ID-R1=10% , largely sur- 476
passing MAE (27.33%), Privacy-Net (39.23%), and ID-Adv 477
(41.23%). This further validates that our method also effec- 478
tively preserves fine-grained semantic cues of eye fundus. 479

4.7. Model Analysis 480

Framework-Level Ablation Study. As shown in Fig- 481
ure 4 (Left), by removing the semantic branch, the AU- 482
ROC of the resulted model ‘w/oSem’ dramatically drops 483
by over 8%, at CMC-R1=5%. On the other hand, with- 484
out the identity-semantics decoupling mechanism, the re- 485
sulting model ‘w/oDecouple’ leads to about 15% CMC-R1 486
increase, for achieving the similar AUROC performance, 487
since substantial identity cues are leaked from the vanilla 488
medical features of MFMs. We further illustrate the pro- 489
tected images from different models. As shown in Figure 5, 490
our results effectively modify identity-related features, such 491
as the shape and location of the clavicle and chest contour. 492
The ‘w/oSem’ model also removes these regions but sig- 493
nificantly alters medical manifestations. In contrast, the 494
‘w/oDecouple’ model preserves medical features but fails to 495
sufficiently suppress identity-related features, such as clav- 496
icle shape, due to residual identity information in the fea- 497
tures from MFMs. These results confirm that both medical 498
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Figure 6. Comparison of semantic and identity information in
terms of Bits-per-Pixel (bpp) [61], calculated as the feature code-
length divided by the original image size.

semantics and identity-semantics decoupling are essential499
for our advanced medical DeID approach.500

Ablation Study on the Decoupling Strategy. As shown501
in Figure 4 (Right), omitting the codelength loss terms502
(‘w/oCodeLengthLoss’) fails to effectively remove identity503
information from MFM features, since the loose space can-504
not effectively decouple the identity and the semantics in-505
formation. Moreover, removing the discrete code bottle-506
neck (‘w/oCodeSpace’) further exacerbates identity leak-507
age, leading to further inferior performance.508

Furthermore, we quantitatively compare the overall and509
identity-related information in MFM features, as shown510
in Figure 6. First, we notice that a significant portion is511
identity-related, i.e., around 44% and 55% for X-ray and512
fundus images. Second, the average information amount of513
the X-ray dataset Chest-Xray is 0.23bpp, much higher than514
0.11bpp achieved by the fundus dataset EyePACS. This is515
aligned with the medical knowledge prior, that X-rays cap-516
ture multiple organs and tissues, containing much complex517
information, than the fundus image that only focuses on518
eyes. This proves that the learned codelength effectively519
describes the medical data characteristics.520

Finally, we analyze the impact of the codelength loss521
weight β and the latent code channel number. As shown522
in Figure 7 (Left), reducing β from 0.5 to 0.1 significantly523
increases CMC-R1 from 5.85% to 12.34%, as a loosely con-524
strained code space fails to effectively decouple identity in-525
formation. Conversely, increasing β from 0.5 to 2 has lit-526
tle effect on CMC-R1 but reduces AUROC performance by527
approximately 6%, as an overly strong constraint impairs528
semantic feature reconstruction. The number of code chan-529
nels also influences performance, by tuning the information530
capacity of the latent code, as shown in Figure 7 (Right).531
However, since β directly regulates the code-length term,532
the impact of the channel number is limited.533

Discussion with Label-Conditioned Diffusion Models.534
These methods [46, 95, 108] employ task-specific labels535
(e.g., disease labels or text reports) to synthesize images,536
which are limited to label-associated tasks. In contrast, our537
approach is task-agnostic and applicable to diverse tasks.538
Moreover, after fine-tuning our approach towards a single539
task, i.e., replacing the MFM with a supervised classifi-540

2 1 0.5 0.2 0.1
5.0

7.5

10.0

12.5

15.0

5.21 5.24
5.85

9.16

12.34

Codelength Weight  (MIMIC-X)

66

68

70

72

74

66.21

68.15

72.24 72.45 72.67

16 64

6

8

10

12

14

5.32 5.67 5.85
6.86 7.21

Code Channel (MIMIC-X)

CMC-R1
AUROC

66

68

70

72

74

69.21

71.15

72.24 72.28 72.32

Figure 7. (Left) Impact of the rate-distortion weight β. (Right:)
Impact of the code dimension. All experiments are evaluated by
masking 95% identity-related regions, for a fair comparison.

cation network, our method achieves 81.92% AUROC at 541
CMC-R1 = 0.30%, surpassing the label-conditioned model, 542
i.e., 80.79% AUROC at CMC-R1 = 0.29%. This confirms 543
that our minimum-codelength representation also benefits 544
the single-task setting, compared to the methods directly us- 545
ing the task labels guiding the diffusion procedure. 546

Model Complexity. All methods and our model com- 547
prise about 380M parameters, for a fair comparison. Our in- 548
ference time is 540 ms on an NVIDIA 4090 GPU, which is 549
similar to MAE (526ms), but slower than Privacy-Net (120 550
ms), ID-Adv (122 ms), and Feat-Noise (124 ms), due to the 551
multiple inference steps of diffusion procedure. Nonethe- 552
less, given the significant performance gains and that the 553
medical imaging procedure itself is time-consuming, the 554
running time is acceptable and does not hinder clinical 555
workflows. In the future, we will integrate the single-step 556
diffusion technique [101] to accelerate the process. 557

5. Conclusion, Future Works, and Other 558

Conclusion. We have presented DCM-DeID, a divide-and- 559
conquer framework for medical image de-identification. 560
By leveraging pre-trained Medical Foundation Models and 561
a minimum codelength-based feature decoupling strategy, 562
our method effectively remove identity cues, while preserv- 563
ing medical task utility. Extensive evaluations demonstrate 564
the superiority of our approach. Future Works. Although 565
our study extensively examines the medical privacy pro- 566
tection problem on large-scale public datasets with patient 567
identity annotations, these datasets consist solely of single- 568
slice images. In the future, we will extend our approach 569
to multi-slice images, such as those produced by Magnetic 570
Resonance Imaging (MRI). Broader Impacts. Our DeID 571
technique is designed for medical AI applications, aiding 572
the human. We emphasize that all rigorous clinical deci- 573
sions must be made by human physicians using the original 574
medical images. Furthermore, it is critical to enforce strict 575
ethical guidelines, working in synergy with technological 576
approaches to achieve medical privacy protection. 577
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[1] Kadek YE Aryanto, André Broekema, Matthijs Oudkerk,579
and Peter MA van Ooijen. Implementation of an anonymi-580
sation tool for clinical trials using a clinical trial proces-581
sor integrated with an existing trial patient data information582
system. European radiology, 22:144–151, 2012. 1583
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[20] William L Croft, Jörg-Rüdiger Sack, and Wei Shi. Obfusca- 658
tion of images via differential privacy: From facial images 659
to general images. Peer-to-Peer Networking and Applica- 660
tions, 14:1705–1733, 2021. 1, 2 661

[21] Ji Dai, Behrouz Saghafi, Jonathan Wu, Janusz Konrad, and 662
Prakash Ishwar. Towards privacy-preserving recognition of 663
human activities. In 2015 IEEE international conference on 664
image processing (ICIP), pages 4238–4242. IEEE, 2015. 2 665

[22] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, 666
and Li Fei-Fei. Imagenet: A large-scale hierarchical im- 667
age database. In 2009 IEEE conference on computer vision 668
and pattern recognition, pages 248–255. Ieee, 2009. 5 669

[23] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos 670
Zafeiriou. Arcface: Additive angular margin loss for deep 671
face recognition. In Proceedings of the IEEE/CVF con- 672
ference on computer vision and pattern recognition, pages 673
4690–4699, 2019. 2 674

[24] Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin 675
Tong. Disentangled and controllable face image genera- 676
tion via 3d imitative-contrastive learning. In Proceedings 677
of the IEEE/CVF conference on computer vision and pat- 678
tern recognition, pages 5154–5163, 2020. 2 679

[25] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, 680
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, 681
Mostafa Dehghani, Matthias Minderer, Georg Heigold, 682
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An im- 683
age is worth 16x16 words: Transformers for image recog- 684
nition at scale. In International Conference on Learning 685
Representations, 2021. 2 686

[26] Emma Dugas, Jared, Jorge, and Will Cukierski. Di- 687
abetic retinopathy detection. https://kaggle. 688
com/competitions/diabetic-retinopathy- 689
detection, 2015. Kaggle. 6 690
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