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BEAM: Bridging Physically-based Rendering and Gaussian
Modeling for Relightable Volumetric Video
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Figure 1: We present BEAM, a novel pipeline that bridges 4D Gaussians with accurate physically-based rendering to produce
relightable volumetric videos, delivering immersive and realistic experiences on platforms such as VR.

Abstract
Volumetric video enables immersive experiences by capturing dy-
namic 3D scenes, enabling diverse applications for virtual reality,
education, and telepresence. However, traditional methods struggle
with fixed lighting conditions, while neural approaches face trade-
offs in efficiency, quality, or adaptability for relightable scenarios.
To address these limitations, we present BEAM, a novel pipeline
that bridges 4D Gaussian representations with physically-based
rendering (PBR) to produce high-quality, relightable volumetric
videos from multi-view RGB footage. BEAM recovers detailed ge-
ometry and PBR properties via a series of available Gaussian-based
techniques. It first combines Gaussian-based human performance
tracking with geometry-aware rasterization in a coarse-to-fine opti-
mization framework to recover spatially and temporally consistent
geometries. We further enhance Gaussian attributes by incorporat-
ing PBR properties step by step. We generate roughness via a multi-
view-conditioned diffusion model, and then derive AO and base
color using a 2D-to-3D strategy, incorporating a tailored Gaussian-
based ray tracer for efficient visibility computation. Once recovered,
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these dynamic, relightable assets integrate seamlessly into tradi-
tional CG pipelines, supporting real-time rendering with deferred
shading and offline rendering with ray tracing. By offering realis-
tic, lifelike visualizations under diverse lighting conditions, BEAM
opens new possibilities for interactive entertainment, storytelling,
and creative visualization.

CCS Concepts
• Computing methodologies→ Rendering.

Keywords
Relighting, Physically-based Rendering, Human Performance Mod-
eling, Dynamic Gaussian Splatting

1 Introduction
Volumetric video captures dynamic 3D scenes from multiple angles,
allowing interactive viewing from any perspective. This technology
is crucial for creating immersive experiences in virtual and aug-
mented reality, enhancing storytelling, education, cultural preser-
vation, and telepresence with lifelike, interactive content. How-
ever, traditional volumetric video is often limited by fixed lighting
conditions captured during recording, which can clash with dy-
namic or virtual environments, reducing realism and flexibility.
Relightable volumetric video overcomes this limitation by enabling
post-capture relighting. This allows for seamless integration into
dynamic lighting environments and offers creative control over
visual aesthetics.

1
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The prevailing workflow [9, 17, 22, 40] for producing relightable
volumetric videos in the industry still relies on tracked mesh se-
quences and texture videos, which can be seamlessly integrated
into standard CG pipelines to support relighting under various
lighting conditions. However, the intricate reconstruction process
often introduces artifacts such as holes and noise, and the quality
of relighting remains constrained, frequently resulting in visible
imperfections. Neural advancements [60, 77, 83] focus on enabling
relighting capabilities using neural factorization within implicit
MLPs representations. However, these approaches often face chal-
lenges in balancing training efficiency, rendering speed, and output
quality, ultimately failing to deliver satisfactory results. Recently,
3D Gaussian Splatting (3DGS)[39], an efficient point-based repre-
sentation, has achieved photo-realistic rendering at unprecedented
frame rates. While dynamic variants[33, 42, 68] can produce high-
quality volumetric videos, they fail to produce the detailed geom-
etry necessary for essential operations like relighting. Although
efforts [21, 35, 44, 56] have been made to integrate physically-based
rendering into the 3DGS pipeline, these methods are often computa-
tionally expensive and limited to static scenarios. These limitations
severely restrict their applicability in industrial workflows, hinder-
ing the efficient production of 4D content.

In this paper, we introduce BEAM, a novel pipeline that bridges
4D Gaussians with accurate physically-based rendering (PBR) for
producing relightable volumetric videos frommulti-viewRGB footage.
Our key idea is to robustly recover detailed geometry of human
performances and decouple the PBR properties (e.g., ambient occlu-
sion, roughness, and base color) using a carefully selected suite of
techniques, i.e., rasterization, performance tracking, and ray tracing,
all within a Gaussian-based paradigm. As a result, BEAM enables
lifelike dynamic scenes that can be seamlessly and CG-friendly
integrated into various platforms under diverse lighting (see Fig. 1).

We first recover detailed and spatial-temporally consistent ge-
ometries from multiview video input, which organically combines
the Gaussian-based performance tracking [33] with the geometry-
aware Gaussian rasterization [81]. While the former excels at mo-
tion tracking and the latter at static geometry recovery, we unify
them in a coarse-to-fine optimization framework. Specifically, we
employ coarse joint Gaussians to track non-rigid motion and dense
skin Gaussians to preserve intricate geometry details. We adopt
a robust optimization process that integrates normal consistency,
photometric consistency, and temporal regularization to enhance
geometric accuracy and smoothness. This enables accurate depth
and normal recovery from the dense Gaussians using the geometry-
aware rasterizer [81], providing a robust foundation for material
decomposition and relighting.

We further decouple the dense 4D Gaussians to recover detailed
material properties, enabling high-quality physically-based ren-
dering grounded in the rendering equation [37] and simplified
Disney BRDF [4]. Assuming human-centric scenes with negligible
metallic components, we focus on accurately associating rough-
ness, ambient occlusion (AO), and base color properties with the
Gaussians, ensuring realistic and adaptable rendering under di-
verse lighting conditions. To achieve this, we adopt a step-by-step
approach to disentangle these properties. Specifically, we first gen-
erate a roughness texture using the material diffusion module in

previous work [82] with multi-view conditioning, which is associ-
ated with the dense Gaussians through UV projection. Then, for the
AO and base color, we adopt a 2D-to-3D strategy, where these at-
tributes are estimated in the input views to bake 2D material maps,
and then optimized into the corresponding dense Gaussians in the
3D space. This strategy effectively reduces noise and smooths the
disentanglement to improve relighting quality. For further 2D AO
and based color decomposition, the lighting environment during
capturing can be estimated using off-the-shelf tool [50], while the
geometry attributes and roughness are obtained in previous stages.
Thus, by carefully re-examining and simplifying the rendering equa-
tion [37], we identify a critical insight: both 2D AO and base color
can be accurately derived by accumulated visibility information
for specific points along specific directions during ray tracing. We
tailor the Gaussian-based ray tracer [48] to compute such visibility,
with a novel alpha blending strategy based on the dense Gaussians.
This strategy efficiently captures visibility information, forming
the foundation for estimating AO and base color maps in the input
viewpoints.

Once the material properties are baked into our dense dynamic
Gaussians, these 4D assets seamlessly integrate with traditional
CG engines, supporting flexible rendering workflows. For real-time
rendering, we adopt deferred shading to deliver immersive and effi-
cient visualizations, while offline rendering leverages ray tracing
to precisely capture complex shadows and occlusions. We further
develop a Unity plugin enabling seamless integration of 4D assets
into various platforms for real-time, lifelike interactions under di-
verse lighting conditions. This innovation opens new possibilities
for storytelling, interactive entertainment, and creative visualiza-
tion, offering users an immersive journey into dynamic, relightable
volumetric worlds.

2 Related Work
Human Modeling. In the field of Human Modeling, numerous

methods [19, 61, 64] have been proposed to address these chal-
lenges. Li [41] integrates temporal denoising into non-rigid mesh
template tracking to capture detailed geometry, while High-quality
FVV [9] compactly represents human performance using tracked
mesh sequences and textured video.

Building on DynamicFusion [51], subsequent methods have
integrated techniques like SIFT features [28], motion field con-
straints [57, 58], neural deformation graphs [3], and parametric
humanmodels like SMPL [45] to address challenges in human recon-
struction, including drift and human-object interactions. Neverthe-
less, these methods predominantly depend on parametric templates,
emphasizing tracking robustness while neglecting high-fidelity tex-
ture reconstruction.

With the advancement of neural rendering techniques [47], sev-
eral works have incorporated time as a latent variable to handle
dynamic scenes [53, 66, 73]. Meanwhile, other approaches [25, 52,
62, 69, 85, 86] leverage the human parametric model [45] to re-
construct the animatable avatar. Furthermore, some hybrid meth-
ods [31, 36, 78] combine explicit volumetric fusion with implicit
neural techniques to capture more details. Additionally, several
methods [30, 36, 55, 59, 67] significantly accelerate training and
rendering speed, by leveraging advanced data structures such as

2
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Figure 2: We propose a novel BEAMmethod to produce Gaussian sequences. We first use tracking results of joint Gaussians
and a normal regularizer to obtain our 4D Gaussians with consistent geometry. Then we infer roughness using a generative
model and apply ray tracing to compute the 2D base color and AO maps, which are then used to optimize the corresponding
Gaussian attributes. Our results can be rendered under varying lighting conditions using both real-time and offline rendering.

voxel grids [20], hash tables [49], and tensor decomposition [6].
Recently, 3DGS [39] ensures both high quality and fast rendering,
while dynamic variants [18, 27, 34, 42, 46, 63, 72, 75, 76] enable
complex 4D scene reconstruction for advanced human modeling.
DualGS [33] uses joint and skin Gaussians to capture motion and
detailed appearance. However, these approaches fail to recover
detailed geometry and do not support relighting.

Human Relighting. Human Relighting aims to manipulate the re-
flectance field of the human surface, enabling an immersive fusion
with novel illumination. Conventional methods [12–14, 24, 70, 71]
use LightStage systems to capture human reflectance characteristics,
requiring costly controlled illumination systems and dense camera
arrays that are not widely accessible to the public. In 2D image-
based relighting tasks, previous methods rely on convolutional net-
works for inference to reduce the need for complex equipment. For
example, Relighting Humans [38] adopts a CNN-based supervised
learning approach to infer light occlusion effects from a spherical
harmonics (SH) formulation. And Tajima [65] further improves
relighting generalization by training neural networks in separate
stages to model diffuse and non-diffuse components individually.
More recently, diffusion-based approaches [16, 80] leverage power-
ful generative models trained on large-scale datasets to synthesize
relight images under diverse lighting conditions. These methods
can produce visually appealing results and handle complex light-
ing variations. However, the lack of a 3D representation makes it
challenging to maintain the 3D consistency of lighting.

In addition, some neural relighting methods [2, 79, 83] combine
NeRF [47] with physically-based rendering techniques to jointly
estimate scene information and material properties for relighting
purposes. Neural Reflectance Fields [1] extend NeRF by modeling
environment illumination as a function of reflectance or lighting.
Nerfactor further introduces an MLP to predict visibility, reduc-
ing the need for dense queries during rendering. Other methods

decouple geometry and BRDF parameters without relying on ex-
plicit illumination constraints. However, their rendering quality
is inadequate and hard to integrate with traditional CG pipelines.
Recent methods [21, 23, 35, 44] leverage the 3D Gaussian Splat-
ting (3DGS) representation for relighting, owing to its ability to
reconstruct fine geometric details and support real-time interac-
tion in CG engines. For example, GaussianShader estimates normal
attributes from 3DGS representations of static objects and further
recovers environment lighting and physically-based material prop-
erties. Some other works focus on enhancing the geometric struc-
ture of the Gaussian point cloud distribution and directly modeling
surface normals as the foundation for lighting calculation. Rade-
GS [81] introduces a normal rasterizer tailored for 3DGS, while
2DGS [26] improves the primitive formulation to better reconstruct
scene surfaces. Additionally, for human performance relighting, re-
searchers [5, 7, 8, 43, 74, 84] extend mesh-based and neural relight-
ing methods by incorporating body pose priors [32, 45]. However,
avatars relying on skeletal priors struggle with complex clothing,
wrinkles, and human-object interactions.

3 Method
Given multi-view video inputs with known environment illumina-
tion, we aim to produce relightable 4D Gaussian sequences with
physically-based rendering (PBR) materials, enabling realistic ren-
dering under diverse lighting conditions. PBR typically requires
multiple material components, such as base color, metallic, rough-
ness, normal, and ambient occlusion (AO). As the metallic attribute
is negligible for human bodies, we set it to zero and focus on opti-
mizing the remaining properties: normal, roughness, AO, and base
color. The resulting relightable 4D Gaussians are rendered under
various lighting and scene configurations, and further integrated
into CG engines and VR applications. The complete pipeline is
illustrated in Fig. 2.
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3.1 Gaussian Modeling and Geometry
Optimization

To obtain temporally consistent geometric information (depth and
normal maps) for physically-based rendering, we seamlessly com-
bine theGaussian-based performance tracking [33]with the geometry-
aware rasterizer [81] within a coarse-to-fine optimization frame-
work. Specifically, our framework uses a dual Gaussian represen-
tation to separately model global motion and visual appearance
through joint and skin Gaussians. Each skin Gaussian is anchored
to multiple joint Gaussians and is warped across frames based on
the tracking results of these joint Gaussians. The optimization pro-
cess integrates a photometric loss 𝐸color, a smooth term 𝐸smooth,
and a temporal regularization term 𝐸temp.

To further enhance the optimization of Gaussian geometry, we
introduce an additional normal consistency loss 𝐸normal. During
rasterization, we assume that the intersection points between rays
and Gaussians correspond to the maxima in Gaussian values. The
depth of a Gaussian is defined as the depth of the intersection point,
while the normal of the intersection plane is taken as the Gaussian
normal. This rasterizing process generates precise depth maps and
normal maps 𝑁𝑟 . Using the obtained depth map, we compute the
normalmap𝑁𝑑 based on a local plane assumption and thenmeasure
the normal consistency loss 𝐸normal between 𝑁𝑑 and 𝑁𝑟 as follows:

𝐸normal =
∑︁
𝑖

𝜔𝑖 (1 − 𝑁⊤
𝑟 𝑁𝑑 ), (1)

where 𝑖 indexes the intersected splats along the ray, and 𝜔𝑖 =

𝛼𝑖
∏𝑖−1

𝑗=1 (1 − 𝛼 𝑗 ) represents the blending weight of the intersection
point.

Together, the total energy term in our 4D Gaussian modeling
and geometric optimization framework is expressed as:

𝐸 = 𝜆color𝐸color+𝜆smooth𝐸smooth+𝜆temp𝐸temp+𝜆normal𝐸normal, (2)

During dynamic training, 𝐸norm is introduced after the appear-
ance optimization over 7,000 iterations, followed by an additional
5,000 iterations dedicated to optimizing the normals. For other en-
ergy terms not discussed here, please refer to DualGS [33]. The
hyperparameters are set as follows: 𝜆color = 1, 𝜆smooth = 0.001,
𝜆temp = 0.00005, 𝜆normal = 0.03.

With the above energy term, we obtain a Gaussian sequence
with temporally consistent geometry. For further mesh extraction,
we render depth maps for training views and then adopt TSDF [11]
fusion. The resulting mesh sequence is then used for subsequent
PBR material decomposition.

3.2 PBR Materials Decomposition
To enable physically-based rendering within the Gaussian-based
paradigm, we enhance the 3D Gaussian representation by intro-
ducing additional material attributes: roughness 𝑟 ∈ [0, 1], ambient
occlusion (AO) A ∈ [0, 1], and base color 𝝆 ∈ [0, 1]3. The 𝑖𝑡ℎ

extended Gaussian P𝑖 (𝑡) at time 𝑡 is defined as:

P𝑖 (𝑡) = {𝝁𝑖 (𝑡), 𝒒𝑖 (𝑡), 𝒔𝑖 (𝑡), 𝑜𝑖 (𝑡), 𝒄𝑖 (𝑡), 𝝆𝑖 (𝑡), 𝑟𝑖 (𝑡),A𝑖 (𝑡)}, (3)

where each component denotes position, orientation, scale, opacity,
color, base color, roughness, and ambient occlusion, respectively.
To better capture subtle appearance changes over time, we allow
the base color 𝜌 to vary for each Gaussian. The roughness 𝑟 , on

the other hand, is kept time-invariant as a stable material property.
To disentangle these material properties, we adopt a step-by-step
optimization strategy.

Roughness. To efficiently assign a roughness value to each Gauss-
ian, we utilize a generative model that offers significantly faster
performance compared to inverse rendering methods. Specifically,
we feed the canonical mesh obtained from geometric optimiza-
tion and multi-view images into the Material Diffusion module of
CLAY [82] to generate a roughness texture for the mesh. Each valid
pixel of the texture is then mapped back to the world coordinate
system, allowing us to assign each Gaussian the roughness value
of its nearest pixel.

Ambient Occlusion and Base Color. For AO and base color, we
first estimate these two attributes in the input views for each frame
to bake 2Dmaterial maps, and then optimize into the corresponding
dense skin Gaussians.

Ambient Occlusion A(𝑥) is an approximation of global illu-
mination, which models the diffuse shadows produced by close,
potentially small occluders within a constrained computational
budget:

A(𝑥) = 1
𝜋

∫
Ω
𝑉 env (𝑥,𝝎𝑖 ) (n · 𝝎𝑖 )d𝝎𝑖 , (4)

where 𝑉 env (𝑥,𝝎𝑖 ) is the visibility term at 3D point 𝑥 in direction
𝝎𝑖 , n is the normal of the surface at point 𝑥 , Ω is the hemisphere
centered in 𝑥 and having n as its axis.

For the base color, we use a simplified Disney BRDF model [4]
composed of a Lambertian diffuse term and a Cook-Torrance spec-
ular term [10], with the outgoing radiance 𝐿𝑜 being a linear combi-
nation of these two components. Since for dielectric materials the
diffuse part is proportional to the base color while the specular part
is independent of it, the rendering equation [37] can be written as:

𝐿𝑜 (𝑥,𝝎𝑜 ) = 𝜌 (𝑥)𝐿𝐷𝑜 (𝑥,𝝎𝑜 ) + 𝐿𝑆𝑜 (𝑥,𝝎𝑜 ) , (5)

where 𝐿𝑜 (𝑥,𝝎𝑜 ) is the outgoing radiance at 𝑥 in direction 𝝎𝑜 , com-
puted by mapping image pixel colors to linear space. 𝜌 is the base
color, 𝐿𝐷𝑜 is the diffuse part residue and 𝐿𝑆𝑜 is the specular part.
To simplify the rendering equation, our computation of the base
color disregards the indirect illumination effects caused by surface
reflections on the human body, and assumes the environment il-
lumination is distant. Consequently, 𝐿𝐷𝑜 and 𝐿𝑆𝑜 are expressed as
follows:

𝐿𝐷𝑜 (𝑥,𝝎𝑜 ) =
1
𝜋

∫
Ω
(1 − 𝐹 ) L(𝑥,𝝎𝑖 )d𝝎𝑖 , (6)

𝐿𝑆𝑜 (𝑥,𝝎𝑜 ) =
∫
Ω
𝑓𝑟𝑠 (𝑥,𝝎𝑖 ,𝝎𝑜 ) L(𝑥,𝝎𝑖 )d𝝎𝑖 , (7)

where L(𝑥,𝝎𝑖 ) = 𝑉 env (𝑥,𝝎𝑖 ) 𝐿env𝑖
(𝝎𝑖 ) (n · 𝝎𝑖 ), 𝐹 is the approxi-

mated Fresnel term, 𝑓𝑟𝑠 is the specular term in the BRDF, 𝐿env
𝑖

can
be queried from the environment map. To capture the environment
map of our multi-view, well-lit dome setup, we position a DSLR
camera at the center and take bracketed exposure photographs from
multiple directions. These photographs are then processed using
PTGui [50] to generate a high dynamic range (HDR) panoramic
image, enabling precise calculation of the incoming radiance 𝐿env

𝑖
from the environment.
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Figure 3: Gallery of our results. We present some real-time rendering results under HDRI settings, which deliver high-fidelity
rendering of human performances across challenging motions and complex clothing textures.

We observe that both 2D AO and base color need the visibility
term 𝑉 env. To accurately compute 𝑉 env, we adopt Gaussian ray
tracer from 3DGRT [48] and compute intersections based on the
maximum Gaussian response. For efficient computation, a proxy
icosahedron mesh is employed to leverage hardware acceleration,
with a two-level BVH constructed at both the mesh and instance
levels. The𝑉 env can be computed from theGaussians’ transmittance
along the ray without sorting them:

𝑉 env (𝑥,𝝎𝑖 ) =
𝑁∏
𝑖=1

(1 − 𝑜𝑖𝐺𝑖 (𝑥𝑖 )), (8)

where 𝑜𝑖 is the opacity of the 𝑖𝑡ℎ Gaussian, 𝐺𝑖 (𝑥𝑖 ) is the response
of the Gaussian kernel at the intersection point 𝑥𝑖 . Ray tracing is
early stopped if the attenuating 𝑉 env is less than a threshold 𝑇 (we
choose 𝑇 as 0.0001). To avoid occlusion from Gaussians directly
above the original depth, we offset the ray origin 𝑜 along the normal
direction: 𝑜 = 𝑥 + 𝜖n.

Finally, we use the Monte Carlo method to solve the A in Eq. 4,
𝐿𝐷𝑜 in Eq. 6, and 𝐿𝑆𝑜 in Eq. 7, then the base color 𝜌 can be solved
from Eq. 5. For our Gaussian sampler, we render the AO image
with 50 samples per pixel (spp) and the base color image with 100
samples per pixel, then apply Intel Open Image Denoise [29] for
denoising.

To optimize the AO and base color material maps into the corre-
sponding dense skin Gaussians, we employ the generated training
view material maps as ground truth supervision while keeping all

other geometry-related attributes fixed. The optimization process
commences by initializing the AO attributes with zeros and the base
color attributes with RGB values. We then train 5000 iterations to
obtain both AO and base color attributes separately. Besides, an 𝐿2
regularization term is applied to the base color to ensure temporal
consistency.

During optimization, the view-dependent RGB color 𝒄 is used for
material decomposition, but it is no longer required for relighting.
After optimization, we discard this attribute and reparameterize
each Gaussian as

P′
𝑖 (𝑡) = {𝝁𝑖 (𝑡), 𝒒𝑖 (𝑡), 𝒔𝑖 (𝑡), 𝑜𝑖 (𝑡), 𝝆𝑖 (𝑡), 𝑟𝑖 (𝑡),A𝑖 (𝑡)}. (9)

This compact representation reduces storage and rendering load in
CG engines and VR platforms, as 𝒄 requires high-order spherical
harmonics (SH) encoding to capture anisotropic effects.

3.3 Physically Based Rendering
By leveraging our relightable 4D Gaussians, we can seamlessly in-
tegrate the 4D assets into traditional CG engines, supporting both
real-time and offline rendering workflows. For real-time render-
ing, we utilize deferred shading to deliver immersive and efficient
visualization across diverse settings. For offline rendering, we em-
ploy ray tracing, which excels in handling shadows and occlusion
relationships, ensuring high-quality results.

Real-time Rendering. We implement real-time rendering using
deferred shading techniques [15], based on the High Definition
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Figure 4: We demonstrate scene and lighting editing within Unity, and immersive viewing using VR headsets.

Figure 5: We present the results of different rendering tech-
niques. Real-time rendering focuses on efficiency, while of-
fline rendering deliversmore realistic shadows and occlusion
effects.

Render Pipeline (HDRP) in Unity. Specifically, we rasterize our
4D Gaussian sequence with extra PBR attributes, including base
color, AO, normals, roughness, and depth maps, and store them
in the GBuffer. This GBuffer is then integrated into the original
forward transparent stage of HDRP for rendering semi-transparent
objects. We also leverage shadow mapping from the HDRP render-
ing pipeline to perform shadow calculations for Gaussians under
different light types. Our approach enables real-time rendering at
100 FPS in 1080P for volumetric videos.

Offline Rendering. For offline rendering, we sort the intersection
points of the Gaussian during ray tracing and use alpha blending
to determine the exact intersection with the entire Gaussian object,
simultaneously acquiring the normal and material attributes at that
point. This allows full compatibility with the widely used path
tracing pipeline. To demonstrate the relighting quality of real-time
rendering and offline rendering techniques, we showcase results
for both under an environment map, as depicted in Fig. 5. Notably,
the offline rendering effectively handles the shadows caused by
occlusions in the Gaussian representations.

4 Application
We perform relighting experiments using the recovered geometry,
material, and illumination from our BEAM pipeline. As shown in
Fig. 3, the results demonstrate that our method effectively handles
diverse lighting conditions, producing photorealistic renderings
with accurate material response.

In Fig. 4, we showcase real-time editing of relightable 4D Gauss-
ian sequences within the Unity platform, including lighting adjust-
ment and scene composition. Our pipeline integrates smoothly with
conventional CG workflows, enabling efficient scene and lighting
editing for artists and designers. With the support of a custom
Unity plugin, our system provides instant rendering feedback, sig-
nificantly enhancing the speed and flexibility of iterative design
and optimization.

Leveraging Unity’s cross-platform support, we seamlessly de-
ploy the edited 4D scenes to VR headsets for immersive rendering
and interaction. Multiple human performances can be aligned and
rendered together in immersive environments, allowing for com-
pelling and realistic virtual experiences. Users can explore the scene
freely, interact with lighting and assets in real time, and experience
performances from novel viewpoints, making it a powerful tool for
virtual production, digital exhibitions, and immersive storytelling.

5 Experiments
To demonstrate our relighting capabilities, we capture 6 diverse hu-
man performances featuring detailed textures and challenging body
motions, using an array of 81 Z-CAM cinema cameras at 3840×2160
resolution and 30 fps, under an adequately illuminated dome en-
vironment. Our pipeline is implemented based on 3DGS [39] and
trained on a single NVIDIA GeForce RTX 3090 GPU. Our method
achieves a processing time of 12minutes per frame for 4DGaussians
modeling and optimization, and 4 minutes for materials estimation
and baking. The generated relightable 4D Gaussian sequences are
fully compatible with VR platforms and CG engines, enhancing
immersive experiences during playback and editing.
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Figure 6: Qualitative comparisons of our method against R-3DGS [21], GS-IR [44] and MeshAvatar [7]. Our method achieves
the highest relighting quality. For more detailed comparison results, please refer to the appendix.

Table 1: Quantitative comparison with SOTA relightingmeth-
ods on our synthetic dataset. Green and yellow cell colors
indicate the best and the second-best results.

AO Base Color Relighting
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
R-3DGS 20.67 0.791 0.307 20.65 0.853 0.166 24.66 0.855 0.105
GS-IR 18.95 0.850 0.345 18.86 0.773 0.281 23.05 0.858 0.177
MeshAvatar 19.53 0.735 0.459 21.04 0.867 0.146 23.93 0.857 0.178
Ours 25.32 0.924 0.168 21.47 0.906 0.084 26.57 0.895 0.086

5.1 Comparison
We compare our method with several state-of-the-art approaches.
The static Gaussian relighting techniques, Relightable-3DGS [21]
and GS-IR [44], reconstruct geometry frame by frame. The dynamic
relighting method MeshAvatar [7] relies on an SMPL skeleton as a
geometric proxy for lighting calculation. We provide these methods
with the same environment maps used by our method for fairness.
As shown in Fig. 6, the normals and AO decoupled by Relightable-
3DGS are blurry, resulting in significant relighting artifacts. GS-IR
struggles to reconstruct smooth normals and effectively separate
the base color from other attributes. AndMeshAvatar is constrained
by mesh topology and SMPL prior, leading to reconstruction ar-
tifacts such as mesh distortion and surface tearing. These issues
hinder the effectiveness of subsequent PBR-based disentanglement
and relighting, resulting in suboptimal quality for high-frequency
details. In contrast, our method produces smooth normals and ac-
curately decouples the AO and base color, enabling high-fidelity
relighting results.

For quantitative comparison, evaluations are conducted on syn-
thetic data to generate ground truth images under predefined light-
ing conditions. We use Blender to simulate the similar capture
perspectives of our dome system and render human meshes from
RenderPeople[54] into corresponding viewpoints using the CYCLES

engine. Reconstruction quality is assessed using three widely used
quantitative metrics: PSNR, SSIM, and LPIPS. To ensure a fair and
precise comparison, we compute the metrics for AO, base color, and
relighting results across two synthetic sequences, each consisting
of 150 frames. In addition, we compute these metrics within the
bounding box of the human region. As shown in Tab. 1, our method
surpasses the other techniques in all metrics evaluated.

5.2 Evaluation
Materials Decomposition. We conduct a qualitative ablation study

on materials decomposition to examine the impact of different vari-
ables on AO, base color, and the final relighting results. For the offset
variable in the Gaussian surface estimation during ray tracing, we
present the results without the offset and with an excessively large
offset (0.1), in the first and second columns of Fig. 7. We observe
that without an offset, AO and base color contained many black
artifacts, and the Gaussian surface estimation suffered significant
degradation. On the other hand, an offset of 0.1 led to overestima-
tion, causing incorrect lighting decoupling and producing overly
bright artifacts. Instead, an offset of 0.02 is applied for human data
in the general case.

In addition, we evaluate the sampling strategy used in the Gauss-
ian sampler for disentangling base color and AO. Specifically, we
compare the effects of sampling count and the denoising compo-
nent. We present results under three configurations: (1) Sample A:
low sample counts (50 spp for AO, 100 spp for base color) with-
out denoising, (2) Sample B: high sample counts (1000 spp for AO,
2000 spp for base color) without denoising, and (3) our adopted
strategy using low sample counts with denoising. As shown in
Fig. 8, our sampling strategy achieves a favorable balance between
rendering quality and computation time, whereas alternative strate-
gies either suffer from noisy outputs or incur significantly higher
computational costs.
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Figure 7: Ablation on offset variable for materials decompo-
sition. Our full model provides accurate AO and base color
representations.

Figure 8: Ablation on sampling strategies for material decom-
position. Rendering time for each image is annotated in the
zoomed-in views.

The Number of Gaussians. We evaluate the impact of varying
the number of 4D Gaussians on both rendering quality and mesh
quality across 100 frames in our virtual dataset, using PSNR and
Chamfer Distance, respectively. As shown in Fig. 9, we visualize
how key metrics vary with the number of Gaussians, along with the
mesh extracted from the Gaussian sequence at 140,000 points. We
observe that using approximately 140,000 geometry-aware Gaus-
sians achieves an optimal balance between rendering quality and
geometric fidelity, while avoiding unnecessary redundancy. This
point count ensures efficient training and is well-suited for applica-
tions such as VR and AR.

5.3 User Study
We conduct a user study to evaluate the temporal reconstruction
quality and normal consistency of our 4D Gaussians. For each
method, we prepare visualizations consisting of normal maps and
relighting results rendered under a consistent skybox environment
to highlight illumination response. Specifically, for GS-IR and R-
3DGS, Gaussian models are trained per frame over 200 frames,
and both normal maps and relighting results are rendered under a
shared HDR skybox. For our method and MeshAvatar, normal maps
and relighting are generated from a dynamic 200-frame Gaussian
sequence using the same skybox. We present the results to 30 users

Figure 9: Ablation study on the number of geometry-aware
Gaussians. With ∼ 140, 000 Gaussians, BEAM achieves high
rendering quality and geometric reconstruction accuracy,
while ensuring efficient training and rendering.

and ask them to select the most visually realistic rendering under
novel lighting. In terms of temporal reconstruction quality and
relighting quality, 95.65% of users prefer our method, while 87%
choose our approach for normal consistency. These preference
results clearly indicate a significant advantage of our method over
the competing approaches, demonstrating its superior performance
in both aspects.

6 Conclusion
Limitations. Although our method achieves high-quality immer-

sive rendering, there are some limitations. First, we approximate
the rendering equation to obtain the 2D material maps, which in-
troduces errors in our decoupled material results and does not
accurately reflect the real physical world. Future work may ad-
dress this issue by incorporating large models like video generation.
Furthermore, our approach, focusing on relighting for a dynamic re-
construction sequence, does not support pose-driven animation or
the generation of new poses. Future work will focus on optimizing
these aspects to improve robustness and applicability.

We have presented a Gaussian-based approach for reconstruct-
ing detailed geometry and PBR materials to produce relightable
volumetric videos. We employ a coarse-to-fine training strategy and
effective geometric constraints to accurately model the dynamic
geometry of 4D Gaussians. Additionally, we decouple PBRmaterials
by using ray tracing to compute the lighting effects and obtain base
color and AO maps, while leveraging generative methods to infer
roughness. These materials are then baked into the corresponding
attributes of the Gaussians. With deferred shading and ray tracing
techniques, our Gaussian sequence supports both efficient real-
time rendering and more realistic offline rendering. Experimental
results demonstrate the advantages of our approach in generating
high-quality dynamic normal maps and material decomposition, as
well as its relightability under a variety of lighting conditions. Our
method is highly compatible with traditional CG engines, offering
significant potential for enhancing rendering realism and flexibility,
enabling users to immerse themselves in and interact with dynamic,
relightable volumetric worlds.
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