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Figure 1. Our proposed ReRF utilizes a residual radiance field and a global MLP to enable highly compressible and streamable radiance

field modeling. Our ReRF-based codec scheme and streaming player gives users a rich interactive experience.

Abstract

The success of the Neural Radiance Fields (NeRFs) for
modeling and free-view rendering static objects has in-
spired numerous attempts on dynamic scenes. Current tech-
niques that utilize neural rendering for facilitating free-
view videos (FVVs) are restricted to either offline render-
ing or are capable of processing only brief sequences with
minimal motion. In this paper, we present a novel tech-
nique, Residual Radiance Field or ReRF, as a highly com-
pact neural representation to achieve real-time FVV ren-
dering on long-duration dynamic scenes. ReRF explicitly
models the residual information between adjacent times-
tamps in the spatial-temporal feature space, with a global
coordinate-based tiny MLP as the feature decoder. Specif-
ically, ReRF employs a compact motion grid along with a
residual feature grid to exploit inter-frame feature similar-
ities. We show such a strategy can handle large motions
without sacrificing quality. We further present a sequential
training scheme to maintain the smoothness and the spar-
sity of the motion/residual grids. Based on ReRF, we design

† The corresponding authors are Minye Wu (minye.wu@kuleuven.be)

and Lan Xu (xulan1@shanghaitech.edu.cn).

a special FVV codec that achieves three orders of magni-
tudes compression rate and provides a companion ReRF
player to support online streaming of long-duration FVVs
of dynamic scenes. Extensive experiments demonstrate the
effectiveness of ReRF for compactly representing dynamic
radiance fields, enabling an unprecedented free-viewpoint
viewing experience in speed and quality.

1. Introduction

Photo-realistic free-viewpoint videos (FVVs) of dy-

namic scenes, in particular, human performances, reduce

the gap between the performer and the viewer. But the goal

of producing and viewing FVVs as simple as clicking and

viewing regular 2D videos on streaming platforms remains

far-reaching. The challenges range from data processing

and compression to streaming and rendering.

Geometry-based solutions reconstruct dynamic 3D

meshes or points [14,16], whereas image-based ones inter-

polate novel views on densely transmitted footages [6, 83].

Both techniques rely on high-quality reconstructions that

are often vulnerable to occlusions and textureless regions.

Recent neural advances [44, 61] bring an alternative route



that bypasses explicit geometric reconstruction. The sem-

inal work of the Neural Radiance Field (NeRF) [44] com-

pactly represents a static scene in a coordinate-based multi-

layer perceptron (MLP) to conduct volume rendering at

photo-realism. The MLP can be viewed as an implicit fea-

ture decoder from a spatially continuous feature space to

the radiance output with RGB and density. However, us-

ing even a moderately deep MLP can be too expensive for

real-time rendering. Various extensions have hence focused

on “sculpting” the feature space using smart representations

to strike an intricate balance between computational speed

and accuracy. Latest examples include explicit feature vol-

umes [21, 57, 77], multi-scale hashing [45], codebook [59],

tri-planes [8], tensors [11, 60], etc.

Although effective, by far nearly all methods are tailored

to handle static scenes. In contrast, streaming dynamic radi-

ance fields require using a global coordinate-based MLP to

decode features from a spatial-temporally continuous fea-

ture space into radiance outputs. A naı̈ve per-frame solu-

tion would be to apply static methods [45,60] on a series of

independent spatial feature spaces. Such schemes discard

important temporal coherency, yielding low quality and in-

efficiency for long sequences. Recent methods attempt to

maintain a canonical feature space to reproduce features in

each live frame by temporally warping them back into the

canonical space. Various schemes to compensate for tem-

poral motions have been proposed by employing implicit

matching [18, 38, 48, 49, 62] or data-driven priors such as

depth [73], Fourier features [67], optical flow [17, 37], or

skeletal/facial motion priors [28,50,69,82]. However, heavy

reliance on the global canonical space makes them fragile

to large motions or topology changes. The training over-

head also significantly increases according to the sequence

length. Recent work [34] sets out to explore feature redun-

dancy between adjacent frames but it falls short of main-

taining a coherent spatial-temporal feature space.

In this paper, we present a novel neural modeling tech-

nique that we call the Residual Radiance Field or ReRF as a

highly compact representation of dynamic scenes, enabling

high-quality FVV streaming and rendering (Fig. 1). ReRF

explicitly models the residual of the radiance field between

adjacent timestamps in the spatial-temporal feature space.

Specifically, we employ a global tiny MLP to approximate

radiance output of the dynamic scene in a sequential man-

ner. To maintain high efficiency in training and inference,

ReRF models the feature space using an explicit grid rep-

resentation analogous to [57]. However, ReRF only per-

forms the training on the first key frame to obtain an MLP

decoder for the whole sequence and at the same time it uses

the resulting grid volume as the initial feature volume. For

each subsequent frame, ReRF uses a compact motion grid

and a residual feature grid: the low-resolution motion grid

represents the position offset from the current frame to the

previous whereas a sparse residual grid is used to compen-

sate for errors and newly observed regions. A major benefit

of such a design is that ReRF fully exploits feature similar-

ities between adjacent frames where the complete feature

grid of the current frame can be simply obtained from the

two while avoiding the use of a global canonical space. In

addition, both motion and residual grids are amenable for

compression, especially for long-duration dynamic scenes.

We present a two-stage scheme to efficiently obtain the

ReRF from RGB videos via sequential training. In particu-

lar, we introduce a novel motion pooling strategy to main-

tain the smoothness and compactness of the inter-frame mo-

tion grid along with sparsity regularizers to improve the

compactness of ReRF. To make ReRF practical for users,

we further design a ReRF-based codec that follows the

traditional keyframe-based strategy, achieving three orders

of magnitudes compression rate compared to per-frame-

based neural representations [57]. Finally, we demonstrate

a companion ReRF player suitable for conducting online

streaming of long-duration FVVs of dynamic scenes. With

ReRF, a user, for the first time, can pause, play, fast for-

ward/backward, and seek on dynamic radiance fields as

if viewing 2D videos, resulting in an unprecedented high-

quality free-viewpoint viewing experience (see Fig. 2).

To summarize, our contributions include:

• We introduce Residual Radiance Field (ReRF), a

novel neural representation, to support streamable

free-viewpoint viewing of dynamic radiance fields.

• We present tailored motion and residual grids to sup-

port sequential training and at the same time eliminate

the need for using a global canonical space notorious

for large motions. We further introduce a number of

training strategies to achieve a high compression rate

while maintaining high rendering quality.

• We develop a ReRF-based codec and a companion

FVV player to stream dynamic radiance fields of long

sequences, with broad control functions.

2. Related work
Novel View Synthesis for Static Scenes. Novel view

synthesis, the problem of synthesizing new viewpoints

given a set of 2D images, has recently attracted considerable

attention. Light field representations [1, 7, 19, 23, 33] for-

mulates the problem by two-plane parametrization. Early

methods [7, 23, 33] generate rays of a novel viewpoint via

interpolation, which can achieve real-time rendering but

require caching all rays. Recent works [1, 19] use neu-

ral networks for compact storage. Mesh-based representa-

tions [10, 63, 71] allow for efficient storage and can record

the view-dependent texture [10, 71]. However, optimiz-

ing a mesh to fit a scene with complex topology is still



a challenge. Multi-plane images [13, 20, 51, 58, 70] have

shown the ability to handle complex scenes because of their

topology-free nature. More recently, the breakthrough ap-

proach NeRF [44] greatly improves the realism of render-

ing and inspires numerous follow-up works including multi-

scale [2,3], relighting [5,56,80], editing [76,78], 3D-aware

generation [8, 15, 24, 52, 68], etc. However, [44] assumes a

static scene and cannot handle scene variations over time.

Novel View Synthesis for Dynamic Scenes. Dynamic

scenes are more complex because of illumination variations

and object movements. One way is to reconstruct the dy-

namic scene and render the geometry from novel views.

RGB [14, 31, 36, 42, 43, 54, 81] or RGB-D [16, 29, 30, 46,

74, 75] solutions have been widely explored. Other meth-

ods [4,40,72] model the dynamic scene by neural networks

for view synthesis. [4] use a neural network to regress each

image from all others to achieve view, time, or light inter-

polation. [40] use an encoder-decoder network to transfer

the 2D images into 3D volume, and leverages volumetric

rendering for end-to-end training. [72] combines the points

feature with multi-view images for dynamic human render-

ing. Using motion-advected feature vectors [27] for still

image animation is also an interesting direction.

More recently, [17, 18, 22, 35, 37, 37, 38, 41, 47–49, 53,

62, 65–67, 73, 79] extend NeRF [44] into the dynamic set-

tings. Some [17, 22, 73] directly condition the neural

radiance field on time to handle spatial changes. Oth-

ers [35, 37, 48, 53, 62, 79, 82] learn spatial offsets from the

current scene to a learned canonical radiance field at each

timestamp. [49] conditions NeRF on additional higher-

dimensional coordinates to tackle the discontinuous topo-

logical changes beyond the continuous deformation field.

[65] handles scene dynamic change by modeling the trajec-

tory of each point in the scene. [38] uses explicit voxels

to model both the canonical space and deformation field for

dynamic scenes. [67] models the time-varying density and

color by Fourier coefficients to extend the octree-based ra-

diance field [77] to dynamic scenes. Compared to [67], our

method uses three orders of magnitude smaller storage and

enables long sequences with large motions.

NeRF Acceleration and Compression. NeRF [44]

shows extraordinary results in free-view rendering, but its

training and rendering speed are slow. Recent approaches

reduce the complex MLP computation by decomposing

NeRF into explicit 3D feature encoding with a shallow

MLP decoder. Methods have been explored involving voxel

grids [26, 34, 39, 57], octrees [21, 67, 77], tri-planes [8],

multi-scale hashing [45], codebook [59], tensor decompo-

sition [11, 55, 60], and textured polygons [12].

Using explicit encoding greatly reduces training and in-

ference time, but the additional storage consumption as-

sociated with these 3D structures is a concern. Some

methods achieve high compression ratios through CP-
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Figure 2. Overview of our method. We first use our sequential

training scheme (Sec. 3) to generate compact ReRF representation

with motion grid Mi and ri for each frame i. Next, our ReRF-

based codec scheme and player (Sec. 4) will compress it to enable

fast data transport and online playing.

decomposition [11], rank reduction [60] or vector quanti-

zation [59] but are limited to static scenes. Recent dynamic

approaches [34] employ narrow band tuning on sparse voxel

grids for video sequences, which is efficient to train but still

has a size of MB per frame. [55] decomposes the 4D space

into static, deforming, and new areas for efficient dynamic

scene training and rendering, but is limited by the length of

the video sequence. In contrast, we embrace residual ra-

diance field and ReRF-based codec scheme, which enables

high compression and streaming for long sequences with

large motion.

3. Neural Residual Radiance Field

In this section, we introduce the details about the pro-

posed ReRF representation for dynamic scenes (Sec. 3.1),

followed by a companion training scheme to generate ReRF

from RGB video inputs (Sec. 3.2).

3.1. Motion-aware Residual Fields

Recall that the radiance with color and density (c, σ) in

NeRF is formulated as c, σ = Ψ(x,d), using MLPs as

decoder given the 3D position x and viewing direction d.

Then, volume rendering is adopted for photo-realistic novel

view synthesis based on the radiance fields. To maintain

high efficiency in training and inference, in ReRF, we use

an explicit grid representation similar to previous work [57].

Specifically, with an explicit density grid Vσ and a color

feature grid Vc, the radiance field of a static scene is:

σ = interp(x,Vσ)

c = Φ(interp(x,Vc),d),
(1)

where interp(·) denotes the trilinear interpolation function

on the grids, and Φ is a relatively shallow MLP for accel-

eration. For simplification, we can union Vσ and Vc into

a common feature grid f by appending an additional chan-

nel to Vc. To that end, the explicit grid representation for
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Figure 3. Illustration of our Neural Residual Radiance Field (ReRF). First, we estimate a dense motion field Dt. Next, we generate a

compact motion grid Mt through motion pooling. Finally, we warp ft−1 to a base grid f̂t and learn our residual grid rt to increase feature

sparsity and promote compression.

a static radiance field consists of a feature grid f and a tiny

MLP Φ as the implicit feature decoder.

To further represent a dynamic radiance field, we adopt

a coordinated-based tiny MLP Φ as the global feature de-

coder for the spatial-temporal feature space. A naı̈ve solu-

tion would be to utilize per-frame feature grids {ft}Nt=1 for

the dynamic scene with N frames, yet discarding important

temporal coherency. Recent work DeVRF [38] maintains a

canonical feature grid f1 with dense motion fields {Dt}Nt=1

to reproduce features in each live frame, but it’s fragile to

large motions or topology changes due to the reliance on a

canonical space. In stark contrast, we propose to explicitly

exploit the feature similarities between adjacent timestamps

in the spatial-temporal feature space. Here, we introduce a

compact motion grid Mt and a residual feature grid rt for

the current frame t. The low-resolution motion grid Mt de-

notes the voxel offset to indicate the corresponding voxel

index in the previous frame for a voxel in the current frame.

The residual grid rt denotes the sparse compensation for

both the adjacent warping error and the newly observed re-

gions in the current frame. Besides, for the first frame, we

adopt a complete explicit feature grid representation f1 with

the companion global MLP Φ. Finally, our ReRF sequen-

tially represents a dynamic radiance field with N frames as

Φ, f1, and {Mt, rt}Nt=1, as illustrated in Fig. 2.

Note that our ReRF enables highly efficient sequential

feature modeling. Given the previous ft−1, current feature

grid ft can be simply obtained from Mt and rt while avoid-

ing the use of global canonical space. Specifically, we first

apply Mt to ft−1 to extract the inter-frame redundancy and

obtain a base feature grid f̂t for the current frame. Let p
denote the index of our explicit grids. Then, the per-voxel

base feature grid is formulated as:

f̂t(p) = ft−1(p+Mt(p)), (2)

which turns to exploiting the inter-frame feature similarities

as much as possible. We then recover the entire feature grid

by adding the residual compensation: ft = f̂t+ rt, enabling

the reconstruction of the current radiance field by applying

the global MLP Φ on ft according to Eqn 1. Compared

to the explicit feature grids {ft}, our motion-aware resid-

ual representation {Mt, rt} is compact and compression-

friendly, which naturally models feature changes in the co-

herent spatial-temporal feature space.

3.2. Sequential Residual Field Generation

Here, we introduce a two-stage and sequential training

scheme to obtain a ReRF representation including Φ, f1, and

{Mt, rt}Nt=1 from long-duration RGB video inputs, which

naturally enforces the compactness of both residual and mo-

tion grids to enable the fascinating streamable applications

in Sec. 4. At the very beginning, we utilize the off-the-shelf

approach [57] to obtain the complete explicit feature grid

f1 for the first frame, companion with the global MLP Φ as

feature decoder. Then, sequentially given the feature grid

ft−1 of the previous frame and the input images for the cur-

rent frame, we compactly generate the motion grid Mt and

residual grid rt in the following two stages.

Motion Grid Estimation. We first follow DeVRF [38]

to a dense motion field Dt yet only from the current frame

to the previous one by treating the previous frame as the

canonical space. To maintain a smooth and compact motion

grid Mt, we further introduce a motion pooling strategy.

Motion vectors in a voxel pt may point to different voxels

pt−1 in the previous frame. Thus, analogous to the standard

average pooling operation, we select the voxel p̄t−1 that

the mean vector points to as the voxel motion Mt(pt) =
p̄t−1. Specifically, we first split the Dt into cubes, where

each cube contains continuous 8 × 8 × 8 voxels. Then,
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Figure 4. Overview of our proposed ReRF-based codec and player

(the modeling elements of the encoder and decoder are shaded in

light green and pink, respectively). The encoder compresses the

input signal to produce a bitstream by using PCA, 3D-DCT, quan-

tization, and entropy coding. The decoder receives the compressed

bitstream, decodes each of the syntax elements, and reverses the

coding process. Additionally, given the decoded motion field Mt

and the previously reconstructed feature grid ˜ft−1, we can obtain

the predicted feature grid f t by deformation.

for each cube we apply an average pooling on the Dt at

the kernel of 8 × 8 × 8, to enforce that each cube shares

the same motion vector. After that, we downsample it to

generate a low-resolution motion grid Mt. Note that our

compact motion grid Mt is compression-friendly since its

size is 512 times smaller than the original dense one. In

this way, some feature cubes from the former frame can be

tracked through the motion field, so that the entropy of the

residual voxels can be further decreased. To that end, we

generate a low-resolution Mt that compactly represents the

smooth motions across frames.

Residual Grid Optimization. With the aid of the com-

pact motion grid Mt, we warp previous feature grid ft−1

into the current base grid f̂t, which coarsely compensates

the feature differences caused by inter-frame motion. Dur-

ing optimizing the residual grid, we fix f̂t and Φ and back-

propagate the gradients to the residual grid rt to only update

rt. Apart from the photometric loss, we also regularize rt
by using an L1 loss to enhance its sparsity to improve com-

pactness. Such sparse formulation also enforces that rt only

compensates the sparse information for inter-frame residue

or the newly observed regions. The total loss function Ltotal

for learning ft is formulated as:

Ltotal =
∑
l∈L

‖c(l)− ĉ(l)‖2 + λ‖rt‖1 (3)

where L is the set of training pixel rays; c(l) and ĉ(l) are

the ground truth color and predicted color of a ray l respec-

tively; λ = 0.01 is the weight of the regularization term.

Once obtained Mt, rt, we can recover the explicit fea-

ture grid ft of the current frame as illustrated in Sec. 3.1, and

also enables the successive training of next frame. Note that

the design and generation mechanism of Mt and rt makes
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Figure 5. GOF structure.

them compression-friendly due to their compact represen-

tation and sparse property, enabling following ReRF codec

and streaming Please refer to our supplementary material

for more training details of ReRF.

4. ReRF Codec and Streamble Application

4.1. Feature-level Residual Compression.

Both motion and residual grids are amenable for com-

pression, especially for long-duration dynamic scenes. To

make ReRF practical for users, we further propose a ReRF-

based codec and a companion FVV player for online

streaming of long-duration dynamic scenes, as shown in

Fig. 4. We first divide the feature grid sequence into several

continuous groups of feature grids (GOF), which is a collec-

tion of successive grids as shown in Fig 5. GOFs are com-

prised of an I-feature grid (keyframe) and a P-feature grid.

Each GOF begins with an I-feature grid which is coded in-

dependently of all other feature grids. The p-feature grid

contains a deformable compensated residual grid relative to

the previous feature grid. Let {f1, r2, · · · , rt−1, rt, · · · } de-

note a GOF, where f1 is the feature grid and rt is the residual

grid.

We first reshape f1 and rt into f1(m,n) and rt(m,n),
a m × n feature matrix, where m and n are the num-

ber of non-empty feature voxels and feature channels, re-

spectively. Then, we perform linear Principal Component

Analysis (PCA) [25] on rt(m,n) to get principal directions

V. Finally, we project the rt to principal directions by

r′t = rt ·V. Each channel of grid f1 and r′t is divided into

cubes of 8× 8× 8 voxels and each cube is separately trans-

formed by using a 3D DCT [9, 32]. Thereafter, the trans-

form coefficients are quantized using a quantization matrix.

The quantized transform coefficients are entropy coded

and transmitted together with auxiliary information such as

motion field Mt, frame type, etc. Specifically, the DC co-

efficients are coded using the Differential Pulse Code Mod-

ulation (DPCM) method [64].

The AC coefficients coding involves arranging the quan-

tized DCT coefficients in a “3D zigzag” order [32], em-

ploying a run-length encoding (RLE) algorithm to group

similar frequencies together, inserting length coding zeros.

Finally, we use Huffman coding to further compress the

DPCM-coded DC coefficients and the RLE-coded AC co-

efficients. An advantage of our compression method is the

ability to achieve variable bitrates via adjusting the quanti-

zation parameters, thus enabling dynamic adaptive stream-

ing of ReRF according to the available bandwidth.
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Figure 6. The rendered appearance results of our ReRF method on inward 360◦ long sequences with large motions. The last row shows

that we can enable variable bitrate.

4.2. Network Streaming ReRF Player

We also implement a companion ReRF player for online

streaming dynamic radiance fields of long sequences, with

broad control functions. When the bitstream is received, the

I-feature grid f̃1 is first reconstructed by performing inverse

quantization and inverse transform on the quantized trans-

form coefficients.

After the I-feature grid is reconstructed, the subsequently

received P-feature grid will then be reconstructed. Specif-

ically, the initial reconstructed residual grid r̂′t is generated

by inverse quantization and inverse transform of the quan-

tized transform coefficients. Then r̂′t is back-projected to

the origin space r̂t = r̂′t · VT . Additionally, given the

decoded motion field Mt and the previously reconstructed

feature grid f̃t−1, we can obtain the predicted feature grid

f t by deformation. Finally, f t as well as r̂t are added to

produce the final reconstructed feature grid f̃t. f̃t is output

to the renderer to generate photo-realistic FVV of dynamic

scenes.

Benefiting from the design of the GOF structure, our

ReRF player allows fast seeking to a new position to play

during playback. Because encountering a new GOF in a

compressed bitstream means that the decoder can decode a

compressed feature grid without reconstructing any previ-

ous feature grid. With ReRF player, for the first time, users

can pause, play, fast forward/backward, and seek dynamic

radiance fields just like viewing a 2D video, bringing an

unprecedented high-quality free-viewpoint viewing experi-

ence.

5. Experimental Results

In this section, we evaluate our ReRF on a variety of

challenging scenarios. Our captured dynamic datasets con-

tain around 74 views at the resolution of 1920×1080 at 25

fps. We use the PyTorch Framework to train the proposed

network on a single NVIDIA GeForce RTX3090. We also

implement a companion ReRF player for online streaming

dynamic fields of long sequences. To verify the effective-

ness of the proposed ReRF player, we use a PC with Intel(R)

Core(TM) i9-11900 CPU@2.5 GHz and NVIDIA GeForce

RTX3090 GPU as the test platform. In the experiments,

the length of each GOF is set to 20. As demonstrated

in Fig. 6 and Fig. 4 in the supplementary, we can gener-

ate high-quality appearance results in both inward 360◦and

forward-facing scenes with long sequences and large, chal-

lenging motions. Our method can flexibly adjust storage

by scaling the quantization factor shown in the third row of

Fig. 6. Please refer to the supplementary video for more

video results.

5.1. Comparison

Dynamic Scene Comparison. We provide the experi-

mental results to demonstrate the effectiveness of our pro-

posed ReRF method. We compare with other state-of-the-



Ground Truth Ours DeVRF INGP-TDVGO INGP

50
 fr

am
es

 r
es

ul
t

20
0 

fr
am

es
 r

es
ul

t
20

0 
fr

am
es

 r
es

ul
t

TiNeuVox

0.53MB

0.74MB

54.07MB 785.6MB

48.28MB 785.6MB

87.3MB

87.3MB

1.75MB 1.35MB

0.44MB 0.34MB

Figure 7. Qualitative comparison against dynamic scene reconstruction methods and per frame static reconstruction methods.

50 frames 200 frames

Method Size(MB)↓ PSNR↑ SSIM↑ MAE↓ LPIPS ↓ Size(MB)↓ PSNR↑ SSIM↑ MAE↓ LPIPS ↓
DeVRF [38] 54.07 26.03 0.9508 0.0142 0.0587 48.28 20.63 0.9192 0.0275 0.0978

DVGO [57] 785.6 37.88 0.9922 0.0021 0.0199 785.6 37.80 0.9920 0.0020 0.0192

INGP [45] 87.30 38.75 0.9936 0.0014 0.0192 87.30 38.86 0.9943 0.0015 0.0189

INGP-T 1.746 31.72 0.9668 0.0064 0.0488 0.436 30.40 0.9683 0.0059 0.0464

TiNeuVox [18] 1.348 27.79 0.9515 0.0097 0.0671 0.337 25.84 0.9422 0.0131 0.0836

Ours 0.650 37.03 0.9902 0.0023 0.0232 0.645 37.02 0.9902 0.0023 0.0244

Table 1. Qualitative comparison against dynamic scene reconstruction methods and per frame static reconstruction methods. We calculate

the storage averaged among the frames and PSNR averaged among the frames and views. Compared to origin DVGO, our model size is

three order smaller and preserves the visual quality.

art methods for dynamic scenes including DeVRF [38],

DVGO [57], INGP [45], INGP-T, and TiNeuVox [18] both

qualitatively and quantitatively. INGP-T is a modified time-

conditioned NGP version. It takes normalized 4D input

[x, y, z, t] as hash table input. In Fig. 7, we report the

visual quality results of different methods when compared

with our ReRF compression method on both short and long

sequences. Specifically, our approach can achieve photo-

realistic free-viewpoint rendering comparable to per-frame

reconstruction DVGO and INGP, but with much less storage

overload. Compared to dynamic reconstruction methods

(DeVRF, INGP-T, TiNeuVox), we achieve the most vivid

rendering result in terms of photo-realism and sharpness,

which, in addition, without losing performance in long se-

quences. DeVRF learns an explicit deformation field from

the live frame to the first frame. When the motion is large,

especially in long sequences, it is difficult to warp directly

from the first frame. INGP-T and TiNeuVox suffer from

severe blurring effects as the frame count increases. Note

that no matter how the number of frames increases (even

to 4000 frames), our method always maintains high photo-

realism and sharpness as shown in Fig. 8.

For quantitative comparison, we adopt the peak signal-

to-noise ratio (PSNR), structural similarity index (SSIM)

Figure 8. Quantitative comparison on the number of frames. We

show that the performance of our method does not decrease as the

number of frames increases.

as metrics to evaluate our rendering accuracy. We choose

70 captured views as training set and the other 4 views as

testing set. In Tab.1, we show that we can effectively use

the small storage to achieve high-quality results. In long se-

quences with large motions, our method outperforms other

dynamic methods in terms of appearance.

Also, note that our method can achieve fast training

(about 10 mins per frame) and fast rendering (20fps), sig-

nificantly faster than NeRF and many previous methods.



Figure 9. Rate distortion curve. This figure shows the rate dis-

tortion of our different components. Our complete architecture is

the most compact and is able to dynamically scale the bitrate to

different storage requirements.

Ground Truth Without motion-
aware residual

Ours-full Without pca

Figure 10. Qualitative evaluation of different variations in our
method.

5.2. Evaluation

Ablation Study. We analyze the motion-aware residual

module and our PCA module. For without motion-aware

residual, we train each frame independently and directly

encode the residual of 2 frames. Fig. 9 highlights that

our motion-aware can significantly improve compactness.

Also, our PCA module can improve even further. In Fig.

10, we show the result under the limit of 700KB storage.

In contrast, our complete model generates photorealistic re-

sults with minimal noise caused by compression.

Analysis of storage. We show the storage of each com-

ponent in our high-quality version in Tab. 2. We report the

average bitrate of our compressed residual feature, voxel

motion field, PCA back-project matrix V T and others in-

cluding masks to indicate the empty space and header file

information. Note that, our total average model size is

793KB which is three orders of magnitude more compact.

Analysis of runtime. As shown in the runtime break-

down analysis on Tab. 3, our ReRF player supports real-

time decoding and rendering of on-demand ReRF streams.

The average time to decode and render one frame is about

47.03ms and 44.62ms, respectively. In addition, the decod-

ing time and rendering time are close to each other, which

is more friendly to parallel processing. The total process-

ing time of the player, achieved by decoding and rendering

in parallel, is about 50ms. Users can experience free-view

videos at high frame rates in an immersive manner, just as

smoothly as viewing 2D videos on YouTube.

Components Residual Motion PCA others

Size (KB) 755.31 31.80 0.68 4.86

Origin Size 786MB

Table 2. Quantitative evaluation on the storage of different Com-

ponents. We show that our proposed method is 1000 times smaller

than the original model size without compression.

Stage Action Avg Time

Decoding

entropy decoding ∼ 26.01 ms

inverse quantization ∼ 0.08 ms

3D IDCT ∼ 1.32 ms

others ∼ 19.62 ms

Rendering - ∼ 44.62 ms

Table 3. Breakdown of processing per-frame time in each stage of

ReRF player. The result is averaged over a whole sequence.

6. Discussion

Limitation. As the first trial to enable streamable radi-

ance field modeling and rendering for long sequences with

rich experiences, our approach has some limitations. First,

compared to storage, our averaged per-frame training time

needs to be improved. We will try some training acceler-

ation techniques from [34, 45]. Second, although we have

reached 20 fps, speeding up our rendering for more fluent

interaction is the direction we need to explore. Moreover,

we need a multiview capture system to provide dynamic se-

quences, which is expensive and hard to construct.

Conclusion. We have presented a novel Residual Radi-

ance Field (ReRF) technique for compactly modeling long-

duration dynamic scenes. Our novel motion/residual grids

in ReRF are compression-friendly to model the spatial-

temporal feature space of dynamic scenes in a sequen-

tial manner. Our ReRF-based codec scheme achieves

three orders of magnitude compression improvement, while

our ReRF player further enables online dynamic radiance

fields streaming and free-viewing. Our experimental results

demonstrate the effectiveness of ReRF for highly compact

and effective dynamic scene modeling. With the unique

streamable ability for long-duration dynamic scenes, we be-

lieve that our approach serves as a critical step for neural

scene modeling, with various potential immersive applica-

tions in VR/AR.
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